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↓ Lecture 5 [14.11.23]

3 | We now apply this algorithm twice, in the lab frame A and the rest frame A0:

i | Rest frame A0:

⁂ Proper length �⁂ Rest length WD Length of rod in A0:

l0 WD LENGTH.E; t 00IA
0/ D jEl 00 � Er

0
0j D jl

0
0 � r

0
0j (2.2)

with simultaneous clock events .t 00; El
0
0/A0 2 L0 and .t 00; Er

0
0/A0 2 R0.

The time t 00 that we choose is irrelevant since the rod is (by definition) at rest in A0. Since
the rod lies on the x0-axis, it is El 00 D .l

0
0; 0; 0/ and Er

0
0 D .r

0
0; 0; 0/.

The subscript “0” in L0 indicates that this is a specific event (coincidence class) we selected
in A0 to compute the length of the rod. It does not mean“as seen from the rest frame A0” or
anything like that. Remember that coincidence classes in E are objective information!

ii | Lab frame A:

Length of moving rod in A:

l WD LENGTH.E; t IA/ D jEl � Er j (2.3)

with simultaneous clock events .tl ; El/A 2 L and .tr ; Er/A 2 R with tl D tr D t .

The time t that we choose might be irrelevant as well, but we do not know this yet.

¡! There is no reason to assume that the eventsL0/R0 chosen in A0 to measure the length of
the rod are identical to the events L/R used in A: L0 ¤ L andR0 ¤ R in general.

4 | How does l0 relate to l?

i | In Section 1.5 we did a lot of hard work to compute the transformation ' which transforms
the coordinates of an event in one inertial system into the coordinates of the same event in
another inertial system. We identified the transformation as the Lorentz transformation:

ƒ.A
vx
�! A0/ W ŒE�A D .t; Ex/ D x 7! ƒvx

x D x0
D .t 0; Ex0/ D ŒE�A0 (2.4)

ii | So let us use this tool [namely Eq. (1.77)] to obtain the coordinates of the events L and R
(used for the length measurement in A) in the rest frame A0 of the rod:

ŒL�A0 D

8̂̂̂̂
<̂
ˆ̂̂:
ct 0l D 


�
ctl �

vx

c
lx
�

l 0x D 
.lx � vxtl/

l 0y D ly

l 0´ D l´

and ŒR�A0 D

8̂̂̂̂
<̂
ˆ̂̂:
ct 0r D 


�
ctr �

vx

c
rx
�

r 0
x D 
.rx � vxtr/

r 0
y D ry

r 0
´ D r´

(2.5)

Here we use El D .lx ; ly ; l´/ and Er D .rx ; ry ; r´/. Since we declared that the rod is fixed on
the x0-axis of A0, and feLg 2 L and feRg 2 R, it must be l 0y D l 0´ D r 0

y D r 0
´ D 0, and

therefore El D .lx ; 0; 0/ and Er D .rx ; 0; 0/. That is, the rod is not rotated by the boost and
always lies on the x-axis of A as well. In particular: l D jEl � Er j D jlx � rxj.

! Two immediate conclusions:
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a | In A0 the two events L and R are no longer simultaneous:

tl D tr in A but t 0l ¤ t
0
r in A0 (since lx ¤ rx). (2.6)

! The simultaneity of events is observer-dependent.

This ambiguity of simultaneity can be graphically illustrated in a spacetime diagram (for
details on how to draw the .t 0; x0/-axes in A: → Problemset 2):

• As a side note, this calculation implies that not only is it generally not true that
L0 D L andR0 D R, it is actually impossible (at least for both pairs).

• In the sketch above, the “interior of rod”-events are painted gray. One is tempted
to ask: Which “line” of these events is the rod? The counterintuitive answer is
that this depends on the observer: For A-observers, horizontal lines of gray events
make up “the rod”, whereas for the A0-observer tilted lines are “the rod”. It is
actually more reasonable to think of the complete area of gray events as “the rod”,
just as the event type feLg is “the left edge” of the rod. This suggests that our
intuitive concept of the instantaneous existence of extended objects – which feels so
natural to us – is, to some extend, misleading.

b | In A0 the coordinate distance is different:

jl 0x � r
0
xj
tl Dtr
D 
 jlx � rxj

vx¤0

¤ jlx � rxj D l (2.7)

¡! The time-dependence cancels so that the expressions are time-independent.

At this point, it is a bit premature to identify the left-hand side as the rest length l0
of the rod because these are spatial coordinates of events that are not simultaneous!
(Remember that the length of any object in any frame is defined as the coordinate
distance of simultaneous events.)

However, since A0 is (by definition) the rest frame of the rod, the position labels of the
A0-clocks adjacent to the ends of the rod are the same for all events:

l 0x
feLg2L
D l 00

r 0
x

feRg2R
D r 0

0

9=; ) jl 0x � r
0
xj D jl

0
0 � r

0
0j D l0 (2.8)
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!⁂ Length contraction �⁂ Lorentz contraction:

A rod of rest length l0 is shorter if measured from an inertial system in relative motion:

l D l0

q
1 � v2

c2

v¤0
< l0 (2.9)

• ¡! Due to isotropy, this result is true for any length of extended objects in the
direction of the boost. A rod along the y0-axis, for example, is contracted according
to Eq. (2.9) for a boost in y-direction, but not for a boost in x-direction.

• The rod is just a proxy for any physical object; the Lorentz contraction therefore
affects all physical objects in the same way. The contraction is not a dynamical
feature of the object itself (like a force that compresses the atomic lattice) but an
intrinsic property of space(time).

• Note that we say above“if measured from…” and not “as viewed from….” This
distinction is important: If you ask how you would visually perceive extended objects
flying by (or how they look on a picture taken by a camera) you have to factor in
that the photons bouncing of the object at different points take different times to
reach your eye (our the camera sensor). If you do the math (→ Problemset 3), this
additional optical effect leads to the surprising result that 3D objects actually do
not look “squeezed” but rotated. This implies in particular that a moving sphere
still looks like a sphere and not like an ellipse (↑ Penrose-Terrell effect [41, 42], see
also Ref. [43]).

You can experience this effect (among others) in the educational game“A Slower
Speed of Light,” which has been developed by the MIT Game Lab for educa-
tional purposes, and can be downloaded here for Windows, Mac, and Linux (→
Problemset 3):

→ Download“A Slower Speed of Light”

You should always keep in mind, however, that this “looking” is not what we refer
to as observing in relativity; the latter has been defined operationally as a
measurement procedure at the beginning of this course.

2.2. Time dilation

1 | ^ Inertial systems A
vx
�! A0 and a clock Ex0 at rest in A0:

2 | ^ Two events:

A0-Clock Ex0 meets A-clock Ex0: .t 00; Ex
0/A0 � .t0; Ex0/A 2 E0 (2.10a)

A0-Clock Ex0 meets A-clock Ex1: .t 01; Ex
0/A0 � .t1; Ex1/A 2 E1 (2.10b)
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¡! The two eventsE0 andE1 relate three different clocks: The single A0-clock Ex0 and two different
A-clocks Ex0 and Ex1.

3 | As for length, the concept of “duration” cannot be defined locally in spacetime. We therefore need
an operational definition (algorithm) of “duration”:

DURATION:

→ Input: Two events E0 and E1, Inertial system label K

← Output: Time interval �tK between events as measured in K

1. Find (unique) clock event .t0; Ex0/K 2 E0.

2. Find (unique) clock event .t1; Ex1/K 2 E1.

3. Return �tK WD t1 � t0.

Hopefully you agree that this is a reasonable definition of the duration (or time interval) between
two events.

4 | We can now apply this algorithm to determine the time elapsed betweenE0 andE1:

In A0
W �t 0 D DURATION.E0; E1IA

0/ D t 01 � t
0
0 Measured by a single clock! (2.11a)

In A W �t D DURATION.E0; E1IA/ D t1 � t0 Measured by two clocks! (2.11b)

5 | How does �t relate to �t 0?

i | Since .t 00; Ex
0/A0 � .t0; Ex0/A and .t 01; Ex

0/A0 � .t1; Ex1/A, we can use the Lorentz transformation
to translate between the coordinates:
Inverse of Eq. (1.77)
�����������!

Remember thatƒ�1
Ev
D ƒ�Ev because of reciprocity; the inverse Lorentz transformation can

then be obtained by substituting vx 7! �vx :

ŒE0�A D

(
ct0 D 


�
ct 00 C

vx

c
x0
�

x0 D 
.x
0
C vxt

0
0/

and ŒE1�A D

(
ct1 D 


�
ct 01 C

vx

c
x0
�

x1 D 
.x
0
C vxt

0
1/

(2.12)

We omit the other two coordinates since they are invariant anyway; the transformation of
the spatial coordinate is also not necessary for the following derivation.

ii | Subtracting the equations for the time coordinate of both events yields:

c.t1 � t0/ D 
c.t
0
1 � t

0
0/ (2.13)

Note that in the inverse Lorentz transformation Eq. (2.12) the position coordinate in A0 is x0

for both events because the same A0-clock takes part in both coincidences.

iii | ⁂ Time dilation:

! The moving clocks in A0 run slower than the stationary clocks in A:

�t D
�t0q
1 � v2

c2

v¤0
> �t0 (2.14)

We renamed�t 0 � �t0 to emphasize the analogy to the proper length l0:

�t0: ⁂ Proper time elapsed in A0 between E0 and E1
�t : Time elapsed in A between E0 and E1
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• The characteristic feature of the proper time �t0 between two (time-like separated)
eventsE0 andE1 is that it can be measured by a single inertial clock that takes part in
both events. All other time intervals must be measured by subtracting the reading of
two different clocks. Eq. (2.14) tells you that these time intervals are always longer than
the proper time�t0.

• ¡! Due to isotropy, our result above is true for boosts in any direction.

Note that in the derivation above, we did not impose any special constraints on the
positions of the clocks (except that they coincide pairwise atE0 andE1). In particular,
we did not assume (despite the sketch suggesting this) that the clocks are located on
the x=x0-axis. All clocks in A0 are slowed down in the same way, irrespective of their
location!

• This result does not contradict our assumption that all clocks are type-identical (= run
with the same rate if put next to each other at rest) because the two events needed
to compare the tick rate of moving clocks necessarily describe coincidences between
different pairs of clocks.

6 | Relativity principle:

Because of the relativity principle SR time dilation must be completely symmetrical: The A0-clocks
run slower compared to the A-clocks, and the A-clocks run slower compared to the A0 clocks.
That this is indeed that case (without being a clock“paradox”) is best illustrated in a symmetric
spacetime diagram:

The existence of the “median frame”A00 between A
vx
�! A0 can be easily shown with the addition

for collinear velocities Eq. (1.70). This symmetric form of a spacetime diagram is sometimes called
↑ Loedel diagram [44] and makes the symmetry between inertial frames manifest; in particular,
the units on the axes of A and A0 are identical (they are not identical to the units of A00, tough). In
this symmetric form, the t 0-axis is orthogonal to the x-axis and the t -axis to the x0-axis. Note that

because of the relativistic addition of velocities, it is A00
Qvx
�! A0 and A00

�Qvx
��! A with Qvx D vx



1C


and tan.'/ D Qvx

c
(→ Problemset 3). Only in the non-relativistic limit vx=c ! 0 one finds Qvx D vx

2

as naïvely expected.

Note that due to the relativity of simultaneity, the two observers use different pairs of clock-events
to decide which of the two origin clocks runs slower:

• ForA the two clock events QD and C are simultaneous such that one has to conclude that the
(blue) A0-clock runs slower than the (red) A-clock.
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• By contrast, for the observer A0 the two eventsD and QC are simultaneous such that one has
to conclude that the (red) A-clock runs slower than the (blue) A0-clock.

It is evident from the diagram that there is no disagreement about coincidences of events (or
readings of clocks). It is just the observer-dependent concept of simultaneity that leads to the
seemingly “paradoxical” reciprocity of time dilation.

7 | Experiments:

• Muon decay [45]:

Muons quickly decay into electrons (and neutrinos):

��
! e�

C �� C N�e : (2.15)

This decay can be readily observed in storage rings of particle colliders like CERN. The
lifetime of muons at rest (measured by clocks in an inertial laboratory frame) is �0� �
2:1948.10/ µs. However, the lifetime of muons in flight (close to the speed of light) is
measured to be �� � 64:368.29/ µs, i.e., much longer! If one carefully takes into account
the speed of the muons and additional experimental imperfections, this result fits Eq. (2.14)
with deviations of only� 0:1% [45].

Notes:

– In the rest frame of the flying muons one would measure the usual lifetime �0� �
2:1948.10/ µs. However, in this frame, the laboratory is Lorentz contracted such that the
muon reaches exactly the same point in space where it decays in this “shorter” lifetime.
Note how time-dilation and Lorentz contraction provide different explanations for the
same experimental obervation.

– One can also use different particle species to study time dilation, for example pions (a
sort of meson, i.e., a hadron with one quark and one antiquark) [46].

• Hafele-Keating experiment [47,48]:

In 1971, J.C. Hafele and R. E. Keating took four Cesium atomic clocks along commerical jet
flights around the globe twice: once eastward and once westward. Compared to a reference
clock on the ground, the clocks on the eastward flight lost on average � 59 ns (= they
ran slower) and the clocks on the westward flight gained � 273 ns (= they ran faster). To
understand this qualitatively, note that the reference clock on the ground is rotating (together
with earth) and therefore is not an inertial clock. Therefore imagine an (approximately)
inertial reference system flying along earth around the sun, and from this system look down
on the north pole; earth is now slowly rotating beneath you. From this inertial system,
the eastward flight has higher velocity than the reference clock, which, in turn, has higher
velocity than the westward flight. Thus you find that the eastward clock runs slower than the
reference clock which runs slower than the westward clock (this is also true if the clocks are
accelerated,→ below). These theoretical considerations are explained in [47].

2.3. Addition of velocities

Details: → Problemset 2

1 | ^ Particle moving with Eu0 D
dEx0

dt 0 in system K 0 and inertial system K with K
Ev
�! K 0:
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2 | Velocity Eu in K:

Eu D
dEx
dt
� Ev ˚ Eu0 $

1

1C Ev�Eu0

c2

�
Ev C
Eu0


v
C


v

c2.1C 
v/
.Eu0
� Ev/ Ev

�
(2.16)

Proof: Use Eq. (1.75) (→ Problemset 2).

¡! The relativistic addition of velocities ˚ is in general not commutative (Ev ˚ Eu ¤ Eu ˚ Ev) nor
associative [Ev˚ .Eu˚ Ew/ ¤ .Ev˚ Eu/˚ Ew]. As you can easily see from Eq. (2.16), it is also not linear:
.�Ev/˚ .�Eu/ ¤ �.Ev ˚ Eu/. Be careful: There are different notations (in particular: orderings) used
in the literature.

3 | ^ Non-relativistic limit (c !1 ) 
v ! 1):

lim
c!1

Ev ˚ Eu0
D lim
c!1

Eu0
˚ Ev D Ev C Eu0 (2.17)

! Galilean addition of velocities

4 | Special case: Ev D .vx; 0; 0/:

ux $
vx C u

0
x

1C
vxu

0
x

c2

; uy $
u0
y=
v

1C
vxu

0
x

c2

; u´ $
u0
´=
v

1C
vxu

0
x

c2

: (2.18)

¡! Note that also the transverse components of Eu0 are modified, but in a different way than the
collinear component u0

x . For Eu
0 D .u0

x ; 0; 0/ we get our previous result for collinear velocities
Eq. (1.70) back.

5 | Thomas-Wigner rotation [49, 50]:

Remember that for collinear addition of velocities the concatenation of two boosts yields another
boost: ƒvx

ƒux
D ƒwx

[recall Eq. (1.57)].

As a straightforward (but tedious) calculation using two general boosts Eq. (1.75) shows, this is not
true in general: ƒEvƒEu ¤ ƒ Ew with Ew D Eu˚ Ev. Rather one finds

ƒEvƒEu D ƒEu˚EvƒR.Eu;Ev/ (2.19)

with the ⁂ Thomas-Wigner rotation R.Eu; Ev/ 2 SO.3/ (we omit the expliclit form of R.Eu; Ev/ here).

This is not in contradiction with our general addition for velocities above because there we were
only interested in the velocity of a moving particle (which you can identify with the origin of its
rest frameK 00); we completely ignored the axes ofK 00. The Thomas-Wigner rotation tells you that
the concatenation of two pure boosts is not a pure boost in general.
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2.4. Proper time and the twin“paradox”

1 | ^ Time-like trajectory P � E of a spaceship with departureD 2 P and arrival A 2 P .

^ Coordinate parametrization Ex.t/ of P in system K with

departure ŒD�K D .tD; ExD/ and arrival ŒA�K D .tA; ExA/ W (2.20)

Formally, P is a set of coincidence classes parametrized inK by the clock events .t; Ex.t//K :

P D f Œ.t; Ex.t//K � j t 2 ŒtD; tA� g � E : (2.21)

This suggests the formal notation ŒP �K D .t; Ex.t//.

2 | Thought experiment:

The spaceship takes a clock along and resets it to �D D �.tD/ at departureD.

What is the reading �A D �.tA/ of the clock at arrival A?

We assume that the clock in the spaceship is type-identical to the clocks used for inertial observers.

3 | Idea:

Approximate the trajectory by a polygon of N segments i D 1; : : : ; N separated by time steps ti
(with t0 WD tD and tN WD tA):

i | Let �ti WD ti�1 � ti and �Exi WD Ex.ti�1/ � Ex.ti /

For each segment, there is an inertial frame K 0 with a t 0-axis that follows the spacetime
segment (because all segments are time-like!). This is the instantaneous rest frame of the
spaceship where the clock in the spaceship and the origin clock ofK 0 are at the same place and
at rest relative to each other. Since the clocks are type-identical, the time��i accumulated
by the spaceship clock on this segment is identical to the time �t 0i elapsed for the origin
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clock of K 0 on this segment: ��i D �t 0i . This time is equal to the spacetime interval
.�s0

i /
2 D .c�t 0i /

2 � 0 because the origin clock is at rest in K 0 (so that �Ex0
i D

E0). But
remember that the spacetime interval .�s0

i /
2 is Lorentz invariant so that we can calculate

the same number in any inertial system: .�s0
i /
2 D .�si /

2 D .c�ti /
2 � .�Exi /

2.

In summary, on the i th interval, the spaceship clock accumulates the time

��i D
�si

c
WD

q
�s2i

c
D

p
.c�ti /2 � .�Exi /2

c
D �ti

q
1 � .�Exi=�ti /

2

c2 (2.22)

The above chain of arguments provided us with a physical interpretation for the Lorentz
invariant spacetime interval .�s/2 > 0 of time-like separated events: It measures (up to a
factor of c) the time accumulated by an inertial (= unaccelerated) clock that takes part in
both events.

ii | Continuum limit N !1 (v.t/ WD jEv.t/j D j PEx.t/j):

d� D
ds
c
D dt

r
1 �

PEx.t/2

c2 ,
dt
d�
D 
v.t/ (2.23)

Note that this is just an infinitesimal version of the time-dilation formula Eq. (2.14) with
�t ! dt and�t0 ! d� .

Since .�s/2 D .�s0/2 is Lorentz invariant:

K
ƒ
�! K 0

W dt

r
1 �

PEx.t/2

c2 D
ds
c
D

ds0

c
D dt 0

r
1 �

PEx0.t 0/2

c2 (2.24)

You can check this also explicitly using the Lorentz transformation Eq. (1.75).
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