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↓ Lecture 34 [08.08.24]

15.1.1. Light-cone gauge

We could quantize the string right away by replacing the Poisson brackets of the oscillator modes with
commutators. However, our theory still has unfixed residual gauge degrees of freedom that lead to
problems after quantization. Here we identify and fix these gauge degrees of freedom, and finally impose

the constraint Tab
Š
D 0. The result will be a classical formulation of the relativistic string that can be

canonically quantized without any issues (almost…):

14 | Remember: We are in Flat gauge Eq. (15.43): hab D �ab D diag .�1;C1/ab
But remember also: Polyakov action has ← conformal symmetry Eq. (15.30)

Conformal symmetries are residual gauge symmetries on the world sheet that allow for the transfor-
mation of the fieldsX� without modifying the world sheet metric hab .

! ^ Combinations of diffeomorphisms & Weyl transformations consistent with flat gauge:

• ^ Infinitesimal diffeomorphism: N�a D �a C "a.�/ [← Eq. (11.90)]

Eq. (11.103)! ıhDiff
ab D �.@b"a C @a"b/ � "

c@c�ab„ ƒ‚ …
D0

(15.76)

The signs are different from Eq. (11.103) because the tensor is covariant.

• ^ Infinitesimal Weyl transformation (15.28): (|�|�1)

Qhab D e
2��ab � .1C 2�/�ab ) ıh

Weyl
ab
D 2��ab (15.77)

15 | ! Infinitesimal conformal transformation:

ıhDiff
ab C ıh

Weyl
ab

Š
D 0 , 2��ab D @b"a C @a"b (15.78)

This differential equation must be solved for "a and �.

16 | To proceed, it is convenient to introduce new coordinates on the world sheet and on spacetime:

• On spacetime, introduce ⁂ light-cone fields:

X˙
WD

1
p
2
.X0 ˙XD�1/ (15.79)
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and analogously p˙ WD
1p
2
.p0 ˙ pD�1/ etc.

The choice of the space-like componentsXD�1 is arbitrary. Rewriting the theory in these
variables singles out the direction � D D � 1 and breaks manifest Lorentz covariance. This
is the price we have to pay for a quantization without gauge-degrees of freedom (→ below).

• On the world sheet, define ⁂ light-cone coordinates:

�˙
WD � ˙ �

ı
H)

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

@˙ D
1
2
.@� ˙ @� /

� D �4@C@�

ds2 D �d�Cd���
�CC �C�

��� ���

�
D

�
0 �1=2

�1=2 0

�
�
�CC �C�

��� ���

�
D

�
0 �2

�2 0

�
(15.80)

Light-cone coordinates are simply inertial coordinates rotated by˙45ı; i.e., both coordinate
vectors point along null cones and are therefore light-like.

17 | Eq. (15.78)
ı
�! Constraints on conformal transformations in light-cone coordinates:

@�"
�
C @C"

C
D 2� ) � D �."/ (15.81a)

@C"
�
D 0 ) "�

D "�.��/ (15.81b)

@�"
C
D 0 ) "C

D "C.�C/ (15.81c)

!Non-infinitesimal conformal transformation:

N�C
D N�C.�C/ and N�C

D N��.��/ (15.82)

The above derivation shows that for each such diffeomorphism aWeyl transformation � exists to
keep the metric in flat gauge (hab D �ab). We do not need to known the specific form of � because
we drop the conformal scaling factor anyway. So the point is that we can make any transformation
of the form Eq. (15.82) while keeping the flat gauge fixed.

18 | Define a rescaled time coordinate:

N�.�C; ��/ WD 1
2

�
N�C.�C/C N��.��/

�
, � N� D �4@C@� N� D 0 (15.83)

Note that the two expressions are equivalent. But this implies that the only constraint on the new
world sheet coordinate N� D N�.�C; ��/ D N�.�; �/ is that is satisfies the wave equation. Conversely,
whenever we have a function on the world sheet that satisfies the wave equation, we can w.l.o.g. set
it equal to (an affine function of ) � .

Compare this to the EOM (15.47) that the fieldsX� satisfy:

�X�.�; �/ D 0 ) �XC.�; �/ D 0 (15.84a)

) XC.�; �/ D XC

R .�
�/CXC

L .�
C/ (15.84b)

That we focus on the light-cone fieldXC is arbitrary; it becomes useful below.
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19 | Thus we can always choose world sheet coordinates .�; �/ (we omit bars) such that…

XC.�; �/ D 2˛0pC� ⁂ Light-cone gauge (15.85)

• In this gauge, theC-oscillator modes of the string are not excited and“frozen.”

• That we pick out XC seems arbitrary at this point; it becomes useful → below. [We could
have chosen any (linear combination of )X� to be an affine function of � .]

20 | We are finally in the position to Enforce the constraint Eq. (15.62):

Tab
Š
D 0 ,

�
PX ˙X 0

�2 Š
D 0 (15.86)

Expand the contraction in the square in light-cone fields:

�2
�
PX ˙X 0

�C„ ƒ‚ …
D 2˛0pC

Light-cone gauge,

�
PX ˙X 0

��
C

D�2X
iD1

�
PX ˙X 0

�i �
PX ˙X 0

�i
„ ƒ‚ …

�

�
PX˙X 0

�2

?

Š
D 0 (15.87)

We omit transversal sum symbols over i D 1; : : : ;D � 2 in the following.

! The constraint can be satisfied by setting:�
PX ˙X 0

��
WD

1

4˛0pC

�
PX ˙X 0

�2
?

(15.88)

! Also theX� degrees of freedom are no longer dynamically independent.

!Wemust quantize only theD � 2 transversal componentsX i (and pC).

21 | ^ Open string (for simplicity, similar arguments hold for the closed string)

Recall that the mode expansion for the open string reads:

Eq. (15.56)! X�
D x�

C 2˛0p�� C i
p
2˛0

X
n¤0

˛�
n

n
e�in� cos.n�/ (15.89)

We use this (and the mode expansions forX i ) to express Eq. (15.88) in terms of modes:

Eq. (15.88)
ı
�! (to show this set � D 0)

p
2˛0˛�

n D
1

pC

 
1

2

1X
mD�1

˛in�m˛
i
m

!
�

1

pC
L?
n (15.90)

(Note that this includes
p
2˛0p� D ˛�

0 [for the open string].)

with ⁂ Transversal Virasoro modes:

L?
n WD

1

2

1X
mD�1

˛in�m˛
i
m (15.91)

That ˛�
n / L

?
n is quadratic in the transversal modes ˛in is evident from Eq. (15.88).
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22 | To sum up, we have fixed the flat gauge and the light-cone gauge. In these gauges, the dynamics of
the classical relativistic string is described by the following canonical pairs of variables:

Transversal modes: X i and …i (i D 1; : : : ;D � 2)„ ƒ‚ …
Equivalently: xi , pi , ˛i

m (m ¤ 0)

Light-cone position & momentum: x� and pC

Note that xC D 0 is frozen [Eq. (15.85)] and p� / ˛�
0 is determined via Eq. (15.90) and therefore

also no longer dynamical.

These variables satisfy the Poisson algebra Eq. (15.58) for i D 1; � � � ;D � 2:

fxi ; pj g D ıij

fpC; x�
g D 1

f˛im; ˛
j
ng D imımCnı

ij

(15.92a)

(15.92b)

(15.92c)

The generalization to the closed string is straightforward and will not be shown in detail.

With this we are ready to quantize the open string! But before we do this, one last thing…

23 | Witt algebra:

The Poisson algebra of the transversal oscillator modes determines the Poisson algebra of the
transversal Virasoro modes (using the bilinearity and product rule for the Poisson bracket):

Eqs. (15.91) and (15.92)
ı
�!

n
L?
m; L

?
n

o
D i.m � n/L?

mCn ⁂ Witt algebra (15.93)

• Canonical quantization is the prescription to replace classical Poisson brackets of phase space
functions by the commutators of operators on a Hilbert space. However, this prescription
is not well-defined for quadratic functions like the Virasoro modes. We will find that after
quantization (and a suitable definition of quantized Virasoro operators) the Witt algebra will
be modified by a ↑ central extension. This unexpected modification signifies a ↑ quantum
anomaly, and is directly linked to the critical dimensionD D 26 of bosonic string theory.

• The Witt algebra shows up due to the conformal symmetry Eq. (15.82) of the Polyakov
action. That the Witt algebra (interpreted as an abstract Lie algebra) describes conformal
transformations in two dimensions can be seen as follows:

Remember that conformal transformations on (some region of ) R2 ' C are given by ↓ mero-
morphic functions f .´/ on C; these can be expanded in a Laurent series:

Q́ � f .´/ D ´ �
P1

nD�1 an´
n : (15.94)

An infinitesimal conformal transformation (janj � 1) changes a scalar field �.´/ (for sim-
plicity assumed to be holomorphic) as follows:

�.´/
Scalar
D Q�. Q́/

Taylor
� Q�.´/ �

�P
n an´

n
�
@´ Q�.´/ : (15.95)
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Thus the generators of such transformations have the form

ıa� � Q�.´/ � �.´/ �
�P

n an´
n@´

�
�.´/ �

�P
n anL1�n

�
�.´/ (15.96)

with generator basis Ln WD ´1�n@´. The Lie algebra of these generators is:

ŒLm; Ln� �.´/ D .´
1�m@´/.´

1�n@´/�.´/ � .´
1�n@´/.´

1�m@´/�.´/ (15.97a)

D .m � n/´1�m�n@´ �.´/ (15.97b)

D .m � n/LmCn �.´/ : (15.97c)

That is, the Witt algebra is the Lie algebra of the “group” of conformal transformations.
(The missing i can be obtained by redefining Lm 7! �iLm.)

15.2. Quantization of the relativistic string

We quantize the string canonically, by replacing phase-space variables by operators and the Poisson algebra
by a commutator algebra. The result will be a “first quantized” string, i.e., a relativistic quantum theory
that describes a single string. Mathematically, this is achieved by techniques of “second quantization”
because the string is described by a field theory.

There are three approaches to quantize the bosonic string:

• ↑ Covariant canonical quantization

Pros: Manifestly Lorentz covariant | Cons: Unphysical states & ghosts (= negative norm states)

This route starts by canonically quantizing Eq. (15.58) without fixing the light-cone gauge and
enforcing the constraint Eq. (15.62) on the classical level. It is akin to ↑ Gupta-Bleuler quantization
of the electromagnetic field.

• Light-cone quantization (→ Section 15.2.1)

Pros: No unphysical states & ghosts | Cons: Not manifestly Lorentz covariant

This is the approach taken below; it is akin to the quantization of the electromagnetic field in
Coulomb gauge usually presented in courses on advanced quantum mechanics.

• ↑ Covariant path integral quantization

This is the modern approach used in string theory (it is more abstract & versatile, but less suited
for a first introduction).

This approaches leverages the full machinery of quantum field theory and is akin to the ↑ Faddeev-
Popov quantization of the electrommagnetic field [20].

Based on our preliminary work in Section 15.1 we can already conclude:

The “first quantized” string is described by a quantum field theory

of D scalar fields X� that live on the 1+1-dimensional world sheet.

There is also a “second” quantization of string theory: ↑ string field theory.

15.2.1. Light-cone quantization

¡! We focus again on the open string for simplicity and state results for the closed string → later.
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1 | Remember: ↓ Canonical quantization:

Poisson bracket : f � ; � g !
1

i„
Œ O� ; O� � : Commutator (15.98)

In the following we set „ D 1 an omit hats O for operators.

2 | Eq. (15.92)! Operator algebra for open string:

h
xi ; pj

i
D iıij�

pC; x�
�
D ih

˛im; ˛
j
n

i
D mımCnı

ij

(15.99a)

(15.99b)

(15.99c)

For the closed string, this algebra is extended by modes Q̨ im in a straightforward way, cf. Eq. (15.54).

^ m > 0!Only non-vanishing commutator:

h
˛im; ˛

j
�m

i
D mıij„ ƒ‚ …

Harmonic oscillator?

!

8<: aim WD
1p
m
˛im

ai�m WD
1p
m
˛i�m

9=; ! h
aim; a

j�
m

i
D ıij„ ƒ‚ …

Harmonic oscillator,

(15.100)

The excitations of an open string are thus described by a set of harmonic oscillator modes, labeled
by the (transversal) direction i D 1; : : : ;D � 2 and modem D 1; 2; : : : of the oscillation.

3 | Virasoro modes Eq. (15.91)
Quantization
�������! Virasoro operators:

Problem: Ordering ambiguity for L?
0 :

L?
n¤0 D

1

2

1X
mD�1

˛in�m˛
i
m„ ƒ‚ …

Commute!

but L?
0 D

1

2

1X
mD�1

˛i�m˛
i
m„ ƒ‚ …

Do not
commute!

(15.101)

What is the correct ordering for quantization?

We do not know! So let us play it safe and not fix the ordering prematurely:

i | To this end, we first define the operator L?
0 as ↑ normal ordered:

L?
0 WD

1
2
˛i0˛

i
0 C

1X
nD1

˛i�n˛
i
n„ƒ‚…

Normal
ordered

15.100
D ˛0 pipi„ƒ‚…

DWp2
?

C

1X
nD1

n ai�n a
i
n„ ƒ‚ …

DWN?

(15.102)

N?: Transverse ⁂ level operator

Normal ordering is a prescription (a ↑ meta operator) to order strings of non-commuting
creation- and annihilation operators such that creation operators are on the left and annihila-
tion operators on the right (this ordering is done without commutation relations). The result
is an operator with vanishing expectation value wrt. the vacuum/ground state j0i. Normal
ordering is often indicated by enclosing an expression by colons: W � W .
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ii | But we do not know the correct ordering for quantization! Conveniently, all possible orderings
can be brought into the normal ordered form Eq. (15.102) by using the commutator algebra
Eq. (15.100); the result is always L?

0 with some constant offset A D const � 1.

!Wherever we used L?
0 in the classical theory, we make the replacement…

L?
0 7! L?

0 �A (15.103)

… in the quantized theory.

A D const � 1: Unknown “normal ordering” constant

Wehenceforth carry the undetermined constantA along;maybewe encounter some condition
that constrains A along the way…

The appearance of the undetermined normal ordering constant Amight be surprising. However,
canonical quantization is not always a unique recipe to bootstrap a quantum theory from a given
classical theory. This is only true for the most simple models – if they do not contain terms like x �p
that lead to ordering ambiguities. Quantization is not a “fire-and-forget” procedure that assigns
every classical theory a unique quantum theory that is magically“true”. Classical theories are limits
(= approximations) of underlying quantum theories for macroscopic systems. As such, they often
do not contain enough information to recover the quantum theory unambiguously (↑ Groenewold’s
theorem [318]).

4 | This implies in particular: (remember that ˛�0 D
p
2˛0p� for an open string)

2˛0p�
D
p
2˛0˛�

0

15.90
15.103
WD

1

pC

�
L?
0 �A

�
(15.104)

Formally, 1=pC is the inverse operator of pC; it will be canceled → below anyway, so that a formal
definition is not necessary.

5 | ^ Mass shell condition:

With these preparations, we find the quantized version of the mass shell condition Eq. (15.73):

M 2
D �p2 D 2pCp�

� p2?

15.104
D

1

˛0

�
L?
0 � A

�
� p2?

15.102
D

1

˛0

�
N?
� A

�
(15.105a)

(15.105b)

(15.105c)

This result has two immediate implications:

• The mass of a string depends on the eigenvalues of the level operatorN? (= its excitations).
This will lead to the identification of various particles in the → string spectrum (Section 15.2.2).

• The (so far undetermined) normal ordering constant A is important! Its value determines
the masses of the particles; in particular – depending on the value of A – the mass squared
can become negative (which would imply a space-like 4-momentum).

6 | ^ Virasoro operators:

What is the commutator algebra of the transverse Virasoro operators?
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Witt algebra Eq. (15.93)
Eq. (15.99)
������!⁂ Virasoro algebra:

h
L?
m; L

?
n

i
$ .m � n/L?

mCn C
D � 2

12
m.m2 � 1/ ımCn„ ƒ‚ …

↑ Central extension

(15.106)

D � 2 � c: ↑ Central charge (the prefactor 1
12

is conventional)

• The Virasoro algebra is the most important algebra in string theory. As it descends from
the conformal symmetry of the classical action, it is also the centerpiece of more general
↑ conformal field theories, where the central charge c is not necessarily linked to the spacetime
dimension (this is rather special to string theory).

It is well-known from conformal field theory that a free scalar (boson) has central charge
c D 1. Thus, in bosonic string theory, each scalar field X� contributes c D 1 to the total
central charge. In light-cone gauge, there are only D � 2 transversal fields X i that are
dynamical, so that the total central charge is c D D � 2.

• For a detailed derivation of Eq. (15.106) see ↑ Zwiebach [7] (§12.4, pp. 254–257).

• We found that the Lie algebra of the quantized generators of conformal transformations is
different from their classical Poisson algebra Eq. (15.93). [Put differently: The Lie algebra of
Virasoro operators does not follow from their classical algebra via the substitution Eq. (15.98).]
This suggests that the original conformal/Weyl symmetry of the classical action might not be
shared by the quantized theory. In general, the phenomenon that a classical symmetry does
not survive quantization is called a ↑ (quantum) anomaly. In the case of string theory, it is
Weyl symmetry that can be spoiled; this particular anomaly is called ↑ Weyl anomaly.

• Side note:

The additional term in Eq. (15.106) is called a ↑ central extension of theWitt algebra Eq. (15.93)
because it extends the old algebra by a new element of the form const � 1 that commutes
with all other elements (L?

m); such elements (of a group or an algebra) are called ↑ central in
mathematics. If one exponentiates a centrally extended Lie algebra, the new central element
leads to additional phase factors in the multiplication rules of the corresponding Lie group,
so called ↑ cocycles. These modified multiplication rules define ↑ projective representations of
the original Lie group (these are essentially group representations “up to phase factors”).
Now remember that quantum mechanics is concerned with state vectors in Hilbert spaces
up to global phases; mathematically speaking, the physical state spaces of quantum theories
are ↑ projective Hilbert spaces. Physical symmetries on such spaces are then implemented
by the aforementioned projective representations. This line of arguments shows that the
appearance of central extensions of symmetry algebras in quantum mechanics is directly
linked to the fact that global phases are unphysical.
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