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↓ Lecture 32 [06.08.24]

15. Sneak Peek: Bosonic String Theory

This primer on bosonic string theory is an amalgamation of various sources, mostly lecture scripts (by
Carmen A. Núñez, Arthur Hebecker, and David Tong), and the introductory textbook by Barton
Zwiebach [7].

1 | What is the rationale of string theory?

• Hypotheses:

– ^ Fixed background spacetime g��

In contrast to general relativity, string theory has no manifestly background
independent formulation. The dynamics of the spacetime geometry is described by
quantum fluctuations (of gravitons) on top of a classical, static background metric.

– Postulate elementary entities: Relativistic strings

The strings of string theory are elementary entities that propagate (and interact) on
the fixed background spacetime; think of them as “rubber bands,” i.e., they can be
stretched. These strings can be closed (= loops) or open (→ later). Note that strings
are not emergent from other degrees of freedom – string theory does not explain were
strings come from.

– Postulate an action that determines…

* … dynamics of single string and

* … interaction between strings.

This action is motivated as a generalization of the action of a free point particle.

– Hope:

* Quantized excitations of strings = Fundamental particles

* Joining/splitting of strings = Fundamental interactions between particles

* No point-like particles! No UV-divergences for ƒ!1

* Classical limit! general relativity

• Intuition:

Closed strings can oscillate. Their lowest-frequency modes look as follows:
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Note that the left oscillation is invariant under rotations about the symmetry axis, whereas
the two modes on the right transform into each other under rotations by˙45ı – just as a
gravitational wave with helicity˙2 would (← Section 13.4).

!We should expect a graviton state from closed strings!

– At this point, it is unclear whether these modes are truly massless after quantization (as
required for excitations of a long-range interaction like gravity).

– The“breathing mode” corresponds to a scalar particle called → dilaton which comes
along with the graviton in string theory; this means that string theory actually predicts
a scalar-tensor theory of gravity (← Section 12.3). For consistence with reality (in gen-
eral relativity there is no dilaton), there must be a mechanism to render the
dilaton massive (= short-ranged).

2 | How to identify gravity?

Since string theory follows Approach 1, we will not start from general relativity and the
Einstein-Hilbert action. But how do we know then that string theory is actually a quantum theory
of gravity? How do we identify the “gravity” part? We could of course hope that the Einstein field
equations fall into our lap, but this is naïve. String theory is a quantum theory and the EFEs are
classical – and the classical limit of a quantum theory is often not evident at all.

A quantum theory of gravity should somehow quantize the gravitational field of general rela-
tivity, i.e., the metric tensor field g�� that describes the geometry of spacetime. To identify
gravity is then tantamount to identifying the (excitations/quanta of the) metric. Hence we arrive at
the fundamental question what makes a field “the metric” in the first place? Up to now we always
postulated the existence of a Riemannian manifold equipped with a metric tensor. We show below
that this is not necessary. A field does not become“the metric” by declaration, but by the way it
interacts with other fields. This yields an operational method to identify gravity in any theory:

i | Observation (Section 13.4): Gravitational waves…

• … propagate with the speed of light.

• … have helicity˙2.

!Gravitons should be massless spin-2 particles.

! If we want to “find gravity” we should search for massless rank-2 tensor fields h�� .

Since 1˝1 D 0˚1˚2 (irreducible representations of SO.3/, ↓ angular momentum coupling),
spin-2 particles are described by rank-2 tensor fields: h�� . This makes sense if you recall
Eq. (13.183) which directly links the two spacetime-indices of the tensor field with the helicity
˙2 under spatial rotations. It also makes sense because a metric tensor g�� is a (symmetric)
rank-2 tensor field. That the field is massless is also directly related to the fact that gravity is a
long-range interaction (like electromagnetism).
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! Question: What makes a massless rank-2 tensor field “the metric”?

ii | ^ Massless rank-2 tensor field h�� on static Minkowski space ��� :

The field h�� is not (yet) the metric – it is just an ordinary tensor field on Minkowski space!

Massless!Only quadratic derivatives allowed
ı
�!Four possible terms: (Details:↑ Ref. [313])

@�h��@�h
�� ; @�h��@

�h �
� ; @�h �

� @�h
�
� ; @�h��@

�h�� (15.1)

• All other conceivable contractions are related to these terms modulo partial integration
(= total derivatives).

• Termswithout derivative likeh��h�� lead to a constant shift in the relativistic dispersion
of the field theory, i.e., to massive excitations.

iii | ^ Additional matter fields �: LMatter.�; @�/! HEMT T ��Matter with @�T
��
Matter

:
D 0

Assumption:

h�� couples to energy & momentum via T ��matter.

This is our only assumption that makes the massless rank-2 tensor field“special”. We will
see that this assumption (plus some self-consistency condition) is all that is needed to elevate
h�� from an ordinary tensor field to “the metric”.

!Most general action:

SŒh; �� WD

Z
d4x

h � a @�h��@�h
��
C b @�h��@

�h �
�

Cc @�h �
� @�h

�
� C d @�h��@

�h��

�
C

�
2
h��T

��
Matter CLMatter

i
(15.2)

with arbitrary couplings a; b; c; d; � 2 R.

Since T ��Matter is symmetric, the tensor field is w.l.o.g. symmetric as well: h�� D h��.

iv |
ı
�! Equation of motion for h�� :

Œ : : : @2h : : : ���„ ƒ‚ …
Depends on a; b; c; d

D
�
2
T
��
Matter (15.3)

This EOM is linear in h�� since the action is quadratic.

! Energy-momentum conservation:

@� Œ : : : @
2h : : : ��� D �

2
@�T

��
Matter

:
D 0 (15.4)

We want this to be identically satisfied for h�� :

@� Œ: : : @
2h : : :��� � 0

ı
H) a D 1

2
; b D �1

2
; c D 1

4
; d D �1

4
(15.5)

The solution is unique up to a global rescaling that can be absorbed into � via a rescaling of
the tensor field.

This means that energy momentum conservation for the matter fields is enforced by the
coupling to h�� rather than a constraint on the dynamics of h�� itself.

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



EX → SNEAK PEEK: BOSONIC STRING THEORY

450
PAGE

v | Hence we end up with the most general action that meets our requirements:

SŒh; �� D

Z
d4x

�
L0.h; @h/„ ƒ‚ …
← Eq. (14.19)

C
�
2
h��T

��
Matter CLMatter

�
(15.6)

¡! The quadratic Lagrangian of the tensor field is identical to L0 in Eq. (14.19) (in which h��
is the deviation of the metric g�� fromMinkowski space ���). Recall that Eq. (14.19) was
derived from the Einstein-Hilbert action Eq. (14.16). This result shows that the seemingly
arbitrary structure of L0 in Eq. (14.19) is actually not arbitrary at all – it is the only possible
quadratic action for a massless rank-2 tensor field that couples to a conserved current.

vi | Inconsistency of Eq. (15.6):

Eq. (15.6) is conceptually inconsistent because it implies the existence of two “types” of
energy & momentum: The first type is the energy & momentum of matter fields, which
couples to h�� . But h�� is a dynamical field and therefore carries energy & momentum of
its own – to this second type h�� does not couple. This doesn’t make sense and we should
get rid of this two-class society of energy & momentum:

This is not just a conceptual inconsistency: Enforcing energy-momentum conservation on a
subsystem (the matter fields) while coupling this subsystem to another dynamical field (the
tensor field) cannot be consistent (i.e., allow for solutions of the combined EOMs). You
studied this on → Problemset 1.

! Assumption (updated):

h�� couples to energy & momentum of all fields (including itself!).

!We therefore should replace the matter HEMT by the total HEMT of the theory:

T
��
Matter 7! T �� WD T

��
Matter C T

��

h
(15.7)

But this makes the Lagrangian self-referential: T ��
h

is computed from the part of the La-
grangian that includes h�� – which includes T ��

h
. Thus you will be forced to add higher and

higher order terms of h�� to make h�� couple to its own energy-momentum tensor. This
infinite series can be summed and yields a new, non-linear theory for the tensor field h�� :
the Einstein-Hilbert action!

One can show [102]
�
�!

SŒh; �� becomes the Einstein-Hilbert action of the field
g�� WD ��� C h�� which couples minimally to LMatter:

Eq. (15.6) 7! Eq. (12.65)

This means that g�� D ��� C h�� becomes the metric – while the static background ���
becomes unobservable – simply by demanding that the massless tensor field h�� couples to
the energy & momentum of all fields.

vii | Conclusion:

Massless tensor h��
… that couples to T ��

)
)

(
g�� � ��� C h�� : Metric

& Einstein-Hilbert action„ ƒ‚ …
general relativity
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• So in principle, we should look for quantized, massless excitations that transform under
a spin-2 representation (have two symmetric spacetime-indices). If these excitations
couple to energy&momentum, they are the excitations of themetric field, i.e., gravitons.

We will not do the latter in string theory, as it requires studying the interactions of
strings. However, we will use a different argument to show that the gravitons of string
theory have metric meaning.

• Let me reformulate the conclusion of this part, as its importance cannot be overstated:

Imagine you are given the action of everything Eq. (12.65), but all fields (metric and
matter alike) have been labeledX i were i runs through all components of all fields; for
good measure, all interactions are given by one big sum of many terms. To interpret
this theory, do you need to know which field plays the role of the metric of spacetime?
According to our findings above, the surprising answer is “No”: The metric field g��
is not the metric by declaration – it behaves as the metric because it can be interpreted
as a massless rank-2 tensor that couples to the total energy-momentum tensor. Being
the metric means that the values of the field correlate with the relational properties we
call “length” and“time”, and these correlations are established by its coupling to the
energy-momentum tensor (which, unsurprisingly, generates local translations in space
and time).

• The above line of arguments shows again that the Einstein field equations are very
generic: One does not need much input to end up with general relativity; recall
Section 12.1.

3 | Reminder (← Section 5.3): Relativistic point particle:

¡! Throughout this chapter we consider objects onD dimensional Minkowski space.

i | ^ Action onD-dimensional Minkowski space R1;D�1:

SŒX� D �m

Z
d�
q
� PX� PX� / Proper time along trajectoryX� (15.8)

This is a functional of time-like trajectories X� W R! R1;D�1:

In string theory, points in spacetime are conventionally denoted by capital letters: X�.

This action Eq. (15.8) is…

• Poincaré/Lorentz invariant

• Reparametrization invariant [� 7! N� D N�.�/] (← Section 5.4)
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ii | ! Canonical momentum:

p� WD
@L

@ PX�
D

m PX�q
� PX� PX�

(15.9)

Note: TheseD momenta are not independent! ! Constraint:

p2 D �m2 (Mass shell condition) (15.10)

iii | The action Eq. (15.8) is not easy to work with because of the square root.
Can one get rid of it?

! ^ Alternative action with auxiliary variable e D e.�/:

SŒe;X� WD
1

2

Z
d�
�
e�1 PX� PX� � em

2
�

(15.11)

! Classically equivalent to Eq. (15.8)

To check this, compute the EOM for the auxiliary variable e,

@L

@e
D 0 , e2 D �

1

m2
PX� PX� ; (15.12)

and plug this back into Eq. (15.11) which immediately yields Eq. (15.8).

Benefits of Eq. (15.11):

• No square root.

• Well-defined for massless particles (= null trajectories).

• Quadratic in derivatives!Quantization via path integral straightforward.

For these reasons, we will use a similar construction for the relativistic string → below.

15.1. The classical relativistic string

4 | Relativistic string:

We generalize the relativistic point particle (which traces out a 1D world line in spacetime) to a
relativistic string (which traces out a 2D world sheet):

¡! This is still classical, relativistic physics; there is no quantum mechanics involved!

i | ^ Parametrization of 2D world sheet inD spacetime dimensions:

X� W R � I„ƒ‚…
World sheet

! R1;D�1„ ƒ‚ …
Spacetime

with .�; �/ 7! X�.�; �/ (15.13)

I � R: Some interval for � (will be specified later)

Interpretation of world sheet coordinates:

• � : Time (coordinate) along trajectory of string

• � : Point (coordinate) on string
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¡! You should think of the parameter range as the base space and spacetime as the target space;
the string positionsX� are thenD fields on the 2D base space (the world sheet). This implies
that the first-quantized theory of a relativistic string will be a 1+1-dimensional quantum field
theory.

ii | What is a reasonable String action?

We do not derive this action but motivate it as generalization of the relativistic point particle:

^ Tangent vectors to world sheet embedded in spacetime:

X� WD @�X
�„ƒ‚…

DW PX�

@� and X� WD @�X
�„ƒ‚…

DWX 0�

@� (15.14)

! Induced ⁂ world sheet metric:

gab WD �.Xa; Xb/ D @aX
�@bX� (15.15)

with a; b 2 f�; �g � f0; 1g.

The world sheet is a 2D submanifold ofD-dimensional spacetime. The Minkowski metric
��� then induces a metric on the world sheet; just like the surface of a ball inherits a metric
from the Euclidean space in which it is embedded.

!World sheet area element:

dA D
p
j detgabj d�d� (15.16)

• Integrating this over � and� yields the surface area of theworld sheetwrt. theMinkowski
metric of spacetime.

• This is a mathematical fact from Riemannian geometry; it has nothing to do with string
theory. Remember that the determinant of a 2 � 2-matrix is the area of a parallelogram
determined by the four numbers of the matrix. You can also think of the worldsheet
as a two-dimensional Riemannian manifold. From Eq. (10.101) it follows then that the
coordinate-independent volume form on such a manifold is dV D

p
gddx D

p
Ngdd Nx;

in d D 2 dimensions this is simply the area: dA D
p
gd2x.

For details: ↑ Zwiebach [7] (§6.1-§6.3, pp. 100–110).

Remember: Relativistic particle action (15.8) / Length of world line

! Idea: Relativistic string action / Area of world sheet

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



EX → SNEAK PEEK: BOSONIC STRING THEORY

454
PAGE

!⁂ Nambu-Goto action:

SNGŒX� WD �T

Z
dA

15.15
15.16
D �T

Z q
. PX �X 0/2 � . PX/2.X 0/2 d�d� (15.17)

Note that PX is time-like whereasX 0 is space-like, so that the expression under the square
root is positive. Expressions like PX �X 0 are short for PX�X 0

� etc.

¡! This is a classical 2D field theory on the world sheet withD fields: X�.�; �/.

There is only one parameter that will show up in various permutations:

• T : ⁂ String tension

• ˛0 �
1

2�T
: ⁂ Regge slope

• ` �
p
2˛0 D

1p
�T

: ⁂ String length

iii | Symmetries of SNG:

It is always good to know the symmetries of a theory, both global and local (gauge):

• D-dimensional Poincaré invariance:

NX�.�; �/ D ƒ��X
�.�; �/C a� (15.18)

– This follows from Eq. (15.17) because the integrand is a scalar and Poincaré trans-
formations are isometries of Minkowski space. This symmetry is therefore a
consequence of our chosen background spacetime.

– This is a global symmetry on the world sheet as it transforms the fields independent
of the point .�; �/ on the world sheet. It is also an internal symmetry, in that it
mixes only the components of the fields and does not mess with the world sheet
points. (Recall that the world sheet – and not spacetime – is the base space of our
field theory!)

• Reparametrization invariance = 2D diffeomorphism invariance:

NX�. N�; N�/ WD X�.�; �/ with N� D N�.�; �/ and N� D N�.�; �/ (15.19)

– This symmetry reflects the geometric nature of the Nambu-Goto action: The area
of the world sheet traced out by the string is independent of the coordinates .�; �/
used to parametrize the world sheet. It is therefore a local gauge symmetry on the
world sheet.

– The transformation Eq. (15.19) marksX� as scalar fields on the world sheet (the
Lorentz index only labels different fields!).

– This symmetry follows from the invariance of the area element Eq. (15.16) under
reparametrizations (coordinate transformations on the world sheet); cf. Eq. (10.101)
forD D 2.

iv | Define the following quantities (P �� are the canonical momenta of the field theory):

P �� WD
@L

@ PX�
$ �T

. PX �X 0/X 0
� � .X

0/2 PX�q
. PX �X 0/2 � . PX/2.X 0/2

(15.20a)

P �� WD
@L

@X 0�
$ �T

. PX �X 0/ PX� � . PX/
2X 0

�q
. PX �X 0/2 � . PX/2.X 0/2

(15.20b)
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ı
�! Equation of motion (for arbitrary boundary conditions):

@P ��

@�
C
@P ��

@�
D 0 : (15.21)

This is the equation ofmotion of a relativistic string on aD-dimensionalMinkowski spacetime.
It looks deceptively simple, but is actually extremely complicated due to Eq. (15.20). Luckily
we will not have to solve it in this form.

v | Alternative action:

Similar to the point particle Eq. (15.8), The Nambu-Goto action is not well-suited for quanti-
zation due to the square root. We can find the analog of Eq. (15.11) by introducing an auxiliary
field that makes the metric on the world sheet dynamical:

!⁂ Polyakov action:

SPŒh; X� WD �
T

2

Z
p
hhab@aX�@bX

�„ ƒ‚ …
DWLP=.� T=2/

d�d� (15.22)

with dynamical world sheet metric hab (a; b 2 f0; 1g) and h D j det.hab/j.

• The Polyakov action (15.22) is classically equivalent to the Nambu-Goto action (15.17).

To check this, calculate the EOMs for hab from Eq. (15.22) and plug them back into
Eq. (15.22) to obtain Eq. (15.17).

• We denote the world sheet metric by hab (and not by gab) to emphasize that hab is
dynamical and not necessarily the metric gab induced on the world sheet by the static
spacetime.

• The metric hab has Lorentzian signature .�;C/.

• ¡! There are now two metric tensors involved: hab is the dynamical metric on the
two-dimensional string world sheet, whereas ��� (hidden in the contraction of the
�-indices with� D 0; � � � ;D�1) is the static backgroundmetric of theD-dimensional
spacetime on which the string propagates (here the Minkowski metric):

@aX�@
aX� � hab@aX�@bX

�
� hab���@aX

�@bX
�

World sheet metric (dynamic) Spacetime metric (static)

(15.23)

• The Polyakov action descibesD massless ← Klein-Gordon fields X� minimally coupled
to the world sheet metric hab; recall Eq. (11.37) and remember that the fieldsX� are
scalars, so that no covariant derivatives are needed (recall also → Problemset 4).

vi | Symmetries of SP:

• D-dimensional Poincaré invariance: (global & internal symmetry)

NX�.�; �/ WD ƒ��X
�.�; �/C a� and Nhab.�; �/ WD hab.�; �/ (15.24)

This symmetry is inherited from the Nambu-Goto action and reflects the fact that the
integrand of the Polyakov action is still a spacetime scalar (and that Poincaré transforma-
tions are isometries of Minkowski space). Note that the world sheet metric transforms
as a scalar under these transformations.
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• Local gauge symmetries: (on the world sheet)

– Diffeomorphism invariance:

a | Let us first define an alternative notation: �0 WD � and �1 WD �
A reparametrization/diffeomorphism can then be written in a compact form:

N� WD N�.�; �/

N� WD N�.�; �/

)
, N�a WD N'a.�/ (15.25)

Here we use the shortcut � � f�0; �1g D f�; �g.

The fields transform then as follows under diffeomorphisms:

NX�. N�/ WD X�.�/ (Scalar) (15.26a)

Nhab. N�/ WD
@�c

@ N�a
@�d

@ N�b
hcd .�/ (Covariant rank-2 tensor) (15.26b)

Again, this reflects the fact that the parametrization of the string world sheet is
unphysical and therefore a gauge symmetry.

¡! This transformation tells us that theD components X� are scalar fields on
the world sheet. By contrast, they transform as vector components on Minkowski
space (← Poincaré symmetry).

b | There is an important special class of diffeomorphisms:

N�a D 'a.�/ is a ⁂ conformal diffeomorphism (or ↑ conformal map) iff

Nhab. N�/ D
@�c

@ N�a
@�d

@ N�b
hcd .�/ D �.�/ hab.�/ (15.27)

for some �.�/ > 0.

* Conformal diffeomorphisms do not change angles. This is apparent from
the rescaling of the metric tensor by�.�/, which only changes the length of
tangent vectors, recall Eqs. (10.9) and (10.10).

* Conformal diffeomorphisms include ← isometries of the world sheet metric,
i.e., coordinate transformations that do not change the components of the
metric at all: �.�/ D 1.

– Weyl invariance:

The Polyakov action is invariant under the transformation

QX�.�; �/ WD X�.�; �/ and Qhab.�; �/ WD e
2�.�;�/hab.�; �/„ ƒ‚ …

⁂ Weyl transformation

(15.28)

for some real-valued function �.�; �/.

* A transformation of this form is called ⁂ Weyl transformation.

* ¡! Note that Weyl transformations are active transformations of the world sheet
metric, they are not coordinate transformations. Hence, Weyl transformations
are not conformal diffeomorphisms.

* Use Qhab D e�2�.�;�/hab to show the invariance of Eq. (15.22).
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* The rescaling by e2� is a convenient way to make sure that the prefactor is
positive for all functions � (which it must be for the newmetric to remain regular
everywhere).

To sum up:

– Conformal diffeomorphisms are a special class of diffeomorphisms that change the
components of the world sheet metric only by a local factor (i.e., they act on points
of the world sheet and move them around).

– Weyl transformations are a particular class of transformation of the values of the
metric field by rescaling it locally without moving points on the manifold around.

Since the Polyakov action has both, Weyl invariance and diffeomorphism invariance…

Diffeo. invariance: .h;X/
'
�! . Nh; NX/ ) SPŒ Nh; NX� D SPŒh; X� (15.29a)

Weyl invariance: h
�
�! Qh ) SPŒ Qh;X� D SPŒh; X� (15.29b)

…we can combine them:

^ Conformal diffeomorphism '!

SPŒh; X�
Diff
D SPŒ Nh; NX�

Conf
D SPŒ Qh; NX�

Weyl
D SPŒh; NX� (15.30)

That is, we can use the Weyl symmetry to “undo” the effect of a conformal diffeomor-
phism on the metric, such that only the fields are affected by the conformal map. We
call such transformations of the fields conformal transformations.

! Conformal transformation ' is symmetry of SP on fixed background metric hab .

!

The Polyakov action is a ⁂ conformal field theory. (15.31)

– Note that a particular class of conformal transformations are global rescalings of the
world sheet: .�; �/ 7! .��; ��/; i.e., conformal field theories are scale invariant.
Thismakes such theories (though not the Polyakov action) useful tools in condensed
matter physics to describe second-order phase transitions (where systems become
scale invariant due to fluctuations).

– The conformal symmetry will not survive the quantization of the Polyakov action
in general; this is called ↑ conformal/trace/Weyl anomaly. Since the conformal
symmetry is a (unphysical) gauge symmetry of the relativistic string, this poses a
fundamental problem. The conformal symmetry can only be restored if (1) the
spacetime dimension isD D 26 and (2) themetric of spacetime satisfies theEinstein
field equations.
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