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Epistemological disclaimer

In Part I and Part II we studied widely accepted and experimentally tested theories of nature:
SPECIAL RELATIVITY and GENERAL RELATIVITY.

Here in Part III; we enter the realm of theories that are the brainchilds of theoretical
physicists only - without any experimental evidence supporting these theories! We do not even
know whether gravity is a quantum phenomenon to begin with ...

Plan for this Excursion

This is a brief outlook on the fascinating but vast and complicated subject of quantum gravity; it is neither
a comprehensive review nor a replacement for dedicated courses on the various subjects.

In this excursion, we address the following questions:
o Chapter 14:
- Why to quantize gravity in the first place?

How do we quantized non-gravitational theories?

Why does this procedure fail for gravity?

- How to circumyvent these problems?
« Chapter 15:

- What is the rationale of string theory?

Why does the quantization of the bosonic string only work in D = 26 spacetime dimensions?

Why is string theory a theory of quantum gravity?

Where does supersymmetry enter the picture?

Warning

The following conventions are widely used in the quantum gravity literature:

In this part ...

...we work in units where c = 1 and # = 1.

...we use the sign convention 7, = (=1, +1,---, +1).
For example, the dispersion of a massive particle reads no longer p? = m?c? but p? = —m?.
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14. Why is quantizing Gravity hard?

i! Note that the Lorentz symmetry of SPECIAL RELATIVITY is not a problem for quantum theory
(¢ Chapter 7). For example, the quantum field theories that constitute the Standard Model of particle
physics are all Poincaré invariant and fully consistent with SPECIAL RELATIVITY. —

The problem of quantum gravity is the quantization
of the metric tensor field g,,, of GENERAL RELATIVITY.

1 Why to quantize gravity in the first place?

o Simple answer: Because everything else can be quantized!

. h—0 .
Quantum electrodynamics —— Maxwell’s electrodynamics

. hA—0 , . .
Quantum mechanics —— Newton’s classical mechanics

h—0 . .
What? —— Einstein’s GENERAL RELATIVITY

The fact that every classical theory - except GENERAL RELATIVITY- can be understood as
the classical limit of an underlying quantum theory suggests that the superposition principle
is a fundamental feature of reality, and motivates the quest for a quantum theory of the

gravitational field (= the metric).
« Extrapolation of GENERAL RELATIVITY and quantum theory — Inconsistencies:
i = Quantum mechanics:
Heisenberg uncertainty: AxAp > % — (p?) > (Ap)? > (h/2Ax)?
< Relativistic particle: E ~ ¢cp — E? > (hc/2Ax)?
In words: Probing small distances requires high energies (e.g., particle colliders).
ii GENERAL RELATIVITY:

... Energy = Gravitational mass: M ~ E /c?

... Mass M concentrated in region rg = 2%" — Black hole & Event horizon

iii | Combing GENERAL RELATIVITY and quantum mechanics yields:
hG

14.1
Axc3 (14.3)

rs =

Imagine you want to mark a point in space with precision 6/ by placing a particle there.

Then the particle must have position uncertainty Ax ~ §/. For §/ — 0, the particle
requires more an more energy until a black hole forms and its event horizon prevents
you from interacting with the particle. This happens when 6/ < ry, i.e., latest when

hG [hG
1< o5 = 8= lpana = C—3~10_35m. (14.2)
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— One cannot localize anything beyond the Planck length.

What this semiclassical argument shows is the impossibility to “zoom in” on the Planck
scale and find a world in which both GENERAL RELATIVITY and quantum mechanics
remain valid unmodified.

—

The concept of space (and time) itself becomes

inconsistent on the Planck scale Ipjanck-

This argument goes back to MATVEI BRONSTEIN [300, 301]; he writes in 1936 in
Ref. [301] (§4, p. 150):
Ohne eine tiefgehende Umarbeitung der klassischen Begriffe scheint es daher wohl

kaum maglich, die Quantentheorie der Gravitation auch auf dieses Gebiet [der
kleinen Abstinde] auszudehnen.

For a historical account on the early days of quantum gravity and the role played by
Bronstein see Ref. [302].

+ An argument from reductionism:

Physics follows a reductionist approach to explain the world around us: All entities are split
into smaller and smaller pieces that follow simpler and simpler laws (molecules > atoms
> nuclei - quarks). The complexity of macroscopic phenomena is then explained as the
emergent behavior of many simple constituents. This approach has worked remarkably well
in compressing the apparent complexity of the world into a few simple fundamental laws.

According to this view, the realm of the very small (studied by atomic and particle physics)
is fundamental, everything else is emergent. But every single experiment that explored the
realm of atomic or subatomic physics revealed a world goverened by the laws of quantum
mechanics. There is no classical behaviour on subatomic scales! Thus, if we take the
reductionist stance, we are forced to accept that guantum mechanics rules the world, and that
our classical, macrospopic world is only an emergent perspective on this reality. Consequently,
gravity should emerge from underlying quantum phenomena as well.

The fly in the ointment is that no one has ever observed any effect of gravity - be it classical
or quantum - in any experiment small enough to be clearly dominated by quantum effects
because gravity is such a weak force: To see quantum effects, the studied systems must be
extremely small (on atomic scales); but then the involved masses are also tiny. Since the
gravitational coupling constant G is orders of magnitudes smaller than the electromagnetic
coupling, every experiment on atomic scales is dominated by electromagnetic forces, while
the gravitational force is practically absent.

To date, the smallest object that showed measurable gravitational effects had a mass of
m ~ 0.5 x 1072 kg [303]. While this might seem light on everyday scales, it is still heavy on
atomic scales: The Aeaviest object that showed quantum interference effects (Vv double-siit
experiment) had a mass of m ~ 4 x 10723 kg [304]. Because of decoherence (= coupling to
the environment), it is experimentally extremely challenging to conduct experiments with
relevant gravitational coupling while remaining coherent.

[You might wonder: m ~ 0.5 x 107° kg = 0.5 mg is quite “heavy”. If one drops a particle
of dust (which certainly weighs much less than 0.5 mg) in vacuum, it certainly falls to the
ground. Doesn’t this show that it interacts gravitationally? The answer is negative: This
experiment only verifies the weak equivalence principle [WEP|, namely that everything -
independent of its mass - is accelerated by g on the surface of Earth. The experiment reveals
the spacetime curvature due to Earth by using the dust particle as a test mass. What is meant by
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“interacts gravitationally” is really “acts as a source of gravity,” i.e., creates its own curvature
of spacetime. ]

Could gravity be intrinsically classical?

While it is certainly a majority view among physicists that gravity emerges from an underlying
quantum theory, not everyone agrees on this. Roger Penrose, for example, advocates that
“quantum mechanics must be gravitized.” He denies that gravity has a quantum nature at
all, and that the collapse of the wavefunction is an objective dynamical process - induced
by gravity - that makes a unique, classical, macroscopic world emerge out of a microscopic
quantum world [173]. This view is in direct contradiction to most other interpretations of
quantum mechanics (collapse theories are not interpretations but modifications of quantum
mechanics) like ™ Everett’s many-worlds interpretation or ™ decoherence theory.

Recent proposals suggest methods to experimentally probe the relation between gravity and
the quantum-classical boundary [305-308] (see Ref. [309] for a review). These proposals are
based on recent (and foreseeable) technological advances in the control of quantum systems
and precision measurement techniques. Since there will be no experiments on the Planck
scale anytime soon, this alternative approach to assess the quantum nature of gravity is
perhaps the most promising route forward.

Ignoring the lack of experimental evidence, let us henceforth assume that gravity emerges from an
underlying quantum theory.

2 | How do we quantized non-gravitational theories?

To understand why physicists struggle to quantize the field theory called GENERAL RELATIVITY,
we must first understand how all the other fields are quantized:

Details: Any course on ™ Quantum field theory [20].

.
1

< Relativistic field theory given by a Lagrangian:

Lo Lint
242 4
£(p,0¢) = (0“$)(ud) —m*¢* — Ag"=" + ... (14.3)
Quadratic part Non-quadratic part
—> Free field — Interactions

We use here exemparily a scalar field ¢; the fields in the Standard Model are more complicated,
but the concepts are the same.

— Action:
S[p] = / dx 2(¢.9¢) = Sold] + Sl (144

For now, we consider arbitrary spacetime dimensions d .

So far, this defines a classical field theory with equations of motion 84S = 0.

The corresponding quantum theory is most conveniently defined via a ¥ path integral:
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oo
m

Define Vv Scattering amplitudes via ¥ path integrals:

Phase
determined
by action
¢O|.lt i S [¢]
M = (Pout|pin) ~ D er (14.5)
% in
Scattering
amplitude Sum over
all evolutions

(“Paths”)

* You can think of the initial (final) field configuration ¢y, (¢oy) as state that encodes

the positions and momenta of many particles long before (after) they interact/collide.
The scattering amplitude M is then the probability amplitude of this particular process
happening. Such quantities can therefore be measured at particle colliders where such
scattering experiment are performed.

The path integral makes Feynman’s interpretation of quantum mechanics explit, ac-
cording to which all possible evolutions that connect an initial state ¢y, with a final state
¢out happen simultaneously. The probability of the transition ¢y, > @y is then given
by the (modulus square) of the sum of phases, each of which depends on the action of
the particular path taken. Why? Because for # — 0 this construction yields as allowed
transitions only the ones connected by trajectories that satisfy the classical equations of
motion. The path integral therefore has the correspondence principle that connects
quantum with classical physics built in.

The benefit of the path integral approach over a canonical quantization via a Hamiltonian
operator is that the former is based on the Lagrangian - which, for a relativistic field
theory, is a Lorentz scalar. This makes the path integral quantization manifestly Lorentz
covariant. By contrast, this symmetry is not manifest in a canonical quantization scheme,
since the Hamiltonian is not a scalar but the zero-component of a 4-vector (the energy-
momentum vector).

Problem:

Without specifying the path integral, this is not
a mathematically well-defined theorys; it is only a

(physically motivated) skezch of a theory.

This means that one must operationally define how exactly the “sum over all trajectories” is
to be evaluated:

How to compute the path integral Eq. (14.5)?

(1) Itis hard to mathematically implement an integral over “all smooth functions ¢”. A first

step is therefore to Fourier transform all fields and parametrize them by their Fourier
components (a countable infinite set of real numbers). The path integral can then be
performed by integrating over each of these Fourier components separately:

— Fourier transform:

(x) %
Do — 1_[ d¢k (14.6)
k
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(2) If Sine = 0, the exponential includes only contributions from So which are, by definition,

quadratic in the fields (and the Fourier components). The integrals to be evaluated are
then Gaussian and can be computed exactly. Such theories describe the propagation
of particles that do not interact, hence they are called free theories. How the particles
propagate is determined by their ¥ propagator, which can be directly computed from
the Gaussian path integral and the free action Sp.

Interesting physics (= scattering) happens only when Sy, # 0j in this case, the integrals
are no longer Gaussian and one must resort to perturbative methods to find approximate
solutions of the path integral:

— Expand exponential in coupling parameter A of interactions:

¢0ut S [¢] 2
M~ " Dp e#"0° [1 + Smt+( Smt) +] (14.7)
n Gaussian
exponent

Perturbation expansion in A

g . .
Propagator —> Interaction vertices

If the coupling constant A o< Sy of the interaction is small, this approximation yields
good results in low orders of the expansion.

This is true for quantum electrodynamics (QED), but not in the low-energy regime of

quantum chromodynamics (QCD) which makes the latter much harder to work with.

In summary, the path integral can be evaluated as a perturbation series. These calculations
are complicated, first because of the combinatorial problem to identify the different terms
of the expansion that must be evaluated, and second, because evaluating the integrations

associated to each of these terms is hard.

The first problem (writing down all terms up to a given order of the expansion) can be

significantly simplified by using the technique of * Fenyman diagrams:

— Perturbation theory — Feynman diagrams:

NICOLAI LANG -
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o Each Feynman diagram can be translated via a dictionary of ™ Feynman rules into a
mathematical expression (typically including integrals) that must be evaluated. The
infinite sum of all these expressions converges to the scattering amplitude.

o Theamplitude is specified by the “legs” of the diagram: Say two particles with momenta
kin and gi, collide and scatter into two (potentially different) particles with momenta
kout and goye. Quantum mechanics (via the path integral) tells us that the total amplitude
of this process is the sum of the amplitudes of all possible processes consistent with
these boundary conditions. The interaction Lagrangian £i, of the theory specifies
the rules for allowed processes; these rules can be condensed into a set of * Feynman
rules specific for the theory. In general, each Feynman graph consists of vertices that
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come from Sjy; and contribute one coupling constant A to the overal expression. The
links between the vertices (excluding the “legs” that stick out and are fixed by the
boundary conditions) correspond to particles propagating between these interactions.
Mathematically, each link corresponds to a ¥ propagator of the free theory.

iv | Momentum conservation demands that the sum of in- and outgoing momenta at each vertex
of a Feynman diagram add up to zero. It is now easy to check that these constraints, together
with the fixed external momenta kin, gin, kout, gour d0 70t fix the momenta of all propagators
(links) if Feynman diagrams contain /oops. This makes sense: the particle propagating along
the loop can have any momentum without violating energy-momentum conservation at the
vertices. Since we do not measure these particles, the path integral tells us that we must add
up all possible values of these “loop momenta”:

Path integral — Integrate over all undetermined momenta — Loop integrals
— Problem: Divergent expressions for k — oo in loops — UV-divergences

o Remember that large momenta k — oo correspond to small distances and high energies;
the limit k& — oo is therefore called % UV-limit and the corresponding divergences
& Ul-divergences.

o The occurence of these divergences is rather generic, and not specific to particularly
“problematic” quantum field theories. One can interpret UV-divergences as indicators
for their breakdown at very small distances (= high energies); i.e., quantum field theories
are presumably ¢ffective descriptions of some other (UV-finite) theory that we do not
know. In this regard, they are similar to the singularities of GENERAL RELATIVITY in
that both can be interpreted as mathematical artifacts that signal the inconsistency (and
thereby invalidity) of the theory in some domain.

The crucial question is whether these UV-divergencies make the whole endeavour (to describe
particles by quantum field theories) a lost cause? After all, if computations yield only infinite
results, we cannot make predictions about anything ® .

— Temporary fix: Introduce momentum cutoff A < oo in all divergent integrals:

(This is called a  regularization.)

00 A
/ dk - / dk (14.8)
0 0

This certainly removes all UV-divergencies and makes your results (scattering amplitudes)
finite. The problem is that these now depend on the unphysical cutoff A, so that they cannot
be measurable quantities anymore! We clearly didn’t solve the problem but only masked it.

— Idea:
Can we “hide” the terms that diverge for A — oo in unphysical parameters?

The answer is “Yes” and the procedure is called  renormalization. To get a feeling for the
conditions that must be met for this to work, we must quantify the divergence of Feynman
diagrams a bit more carefully:

v | Superficial degree of divergence:

The following line of arguments might seem sloppy; there are more rigorous derivations that
come to the same conclusion but require more input from 1 guantum field theory [20].

a| Recall: A = ¢ = 1 — Compton wavelength: A, = % = 27”

— Dimension of length: [A.] = M ~! (M: dimension of mass)
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b | Dimension of action: [S] = 1 (since 7 = 1)
¢ S= fddx £ and [d% ] = M~¢ — Dimension of Lagrangian: [£] = M¢
Since all dimensions can be expressed in M, we say that “ £ has (mass) dimension d ™.

d = From Eq. (14.3) follows (use [0] = M):
6] =M“T and [A] = MO (14.9)

e | <t Amplitude ¥ of single Feynman diagram F with N external lines:

. . . . . . d—2
Has same dimension as (hypothetical) single interaction n¢®¥ — [n] = M4~V 7"
Mott lwse Vit Saue diacerion ¥

e )
e N\ LA \]/
= + ) + 7+

.bhxamm F Unao((atﬁc-( ‘;iog(( vukn“ Jl.k‘,luw
[rod _Nd=2
f Let the Feynman diagram F have V interaction vertices —

A—o0

F AR AVAP (14.10)
D: & Superficial degree of divergence of F

After performing the integrals to compute the amplitude # from the Feynman diagram
F, the only dimensionful quantities left are V' powers of the coupling constant A (one for
each interaction vertex of the diagram) and D orders of the momentum cutoff A. In the
limit A — oo, the asymptotic expression of ¥ must therefore scale as ¥ A P ; note that
this is an implicit definition of D. If D > 0, the contribution ¥ has a UV-divergence.

— (use [A] = M)

YA = [#] = M4V (14119
d—2
= Viegy [Al+D =d - NT (14.11b)
logy, [A]: # Mass dimension of the coupling constant A

— We find for the superficial degree of divergence of ¥ :

Depends on
Depends on amplitude M
diagram F —
D =d—logy [A]V—-—{——|N (14.12)
N—— 2
Eq. (14.9):
a=nts2

We can conclude for d > 2: (D < 0 = Amplitude ¥ converges for A — o0.)
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If the mass dimension of A is zero or positive, diagrams with more “legs” (in- and
out-going particles) become less divergent and eventually converge.

Whether diagrams with more interaction vertices (= higher order of perturbation
theory) start to converge or diverge depends on the sign of the mass dimension of
the coupling constant.

g — Classification:

This lead to the following classification of interacting quantum field theories:

log,s[A] > 0 (Coupling constant has positive mass dimension.)
— Only a finite number of Feynman diagrams (superficially) diverge ©© .
— &% Super-renormalizable theory

While this case is in some sense optimal, it is less relevant for interesting quantum
field theories like the Standard Model; thus it plays no role in the following.

logy,[A] = O (Coupling constant is dimensionless.)
— Only a finite number of amplitudes (superficially) diverge © .

Here “amplitudes” refer to infinite sums of Feynman diagrams, classified by their
number of external “legs” N.

— & Renormalizable theory

Most interesting quantum field theories (like the Standard Model) are of this type.
log,s[A] < 0 (Coupling constant has negative mass dimension.)

— All amplitudes diverge at sufficiently high order in perturbation theory ® .

This follows because every amplitude has contributions from Feynman diagrams
with arbitrary many vertices V' so that - independent of N - the superficial degree
of divergence D becomes positive for high-enough orders of perturbation theory.

— & Non-renormalizable theory

h | Renormalization:

The following procedure of renormalization works (provably) for renormalizable (and
super-renormalizable) theories because it assumes that a finite number of amplitudes are
UV-divergent. One can then show rigorously that all UV-divergencies of such theories
can be traced back to this finite set of divergent amplitudes (1 Weinberg theorent). This
implies that if these UV-divergences can be “cured”, all scattering amplitudes of the
theory become UV-finite. The procedure to “cure” a finite number of UV-divergent
amplitudes is called renormalization and goes as follows:

@)

(2)

(3)

Start with a regularized (UV-cutoff A) (super-)renormalizable theory.
— There is only a finite number of UV-divergent amplitudes.

For each divergent amplitude, “add” a counter term with unphysical bare parameter
to the Lagrangian.

Strictly speaking you don’t add the counterterms: You sp/it the terms with bare
parameters into (fixed) physical parameters and (UV-divergent) unphysical param-
eters; the latter are the counter terms.

One can then show that all UV-divergences can be absorbed by these (unobservable
& unphysical) bare parameters by fixing their corresponding (observable & physical)
renormalized parameters.
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(4) Youend up with a theory that yields finite scattering amplitudes in the limit A — oo

and reproduces the observed physical parameters every order of perturbation
theory © .

The UV-divergencies are now “hidden” in the bare parameters and make them
diverge in the limit A — co. But this is not a problem because they do not affecet
observable quantitites.

This means in particular:

Renormalizable quantum field theories allow for the computation of

predictions by fixing a finite number of physical low-energy parameters.

» For QED this would be the physical electron mass m and charge e; in the Standard

Model there are about 18 such parameters that determine the masses and interac-
tions of elementary particles. These must be measured and can then be used to
make predictions about scattering amplitudes. This is why the Standard Model
cannot predict the masses of elementary particles (e.g., the Higgs boson).

You might wonder: If we must use masses and interaction strengths of particles as
input of our theories, what is it actually good for? Remember that the predictions
of quantum field theories are scattering amplitudes M. These are complicated
functions of the momenta (both absolute value and direction) of the in- and out-
going particles. It is this highly non-trivial functional form that is predicted by
the theory - which can be compared to scattering experiments. In the case of the
Standard Model, theory and experiment match perfectly!

o Here is a very accessible explanation of renormalization by John Baez:

https://math.ucr.edu/home/baez/renormalization.html

But conversely:

We do not know how to define and/or extract predictions

from non-renormalizable quantum field theories.

For a non-renormalizable QFT we would have to add infinitely many counter terms
and fix infinitely many physical parameters to absorb the infinitely many UV-divergent

amplitudes. This makes such theories useseless and conceptually ill-defined.

vi | Examples:

NICOLAI LANG -

o < Scalar field Eq. (14.3) in d = 4 withn = 4:
14.9 d—-2 _

logy/[A] = d —n 0 (14.13)
— ¢*-theory is renormalizable in d = 3 + 1 spacetime dimensions.
+ < Quantum electrodynamics (QED) in d = 4:
$0 Lint
_ 1 —_——
LqQED(A, 04, ¥, 0V) = V(i —m)¥— ZF;WFMV —eWy*w Ay (1414)
~———

—_————

Free fermions
Free photons
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e: Coupling constant (= electric charge of fermion W)
— Dimensional analysis:
_ _ 14.14
A =M =M, [W2MT =M"2 == logyle] 20
(14.15)

— QED is (superficially) renormalizable in ¢ = 3 + 1 spacetime dimensions © .

- Note that we only showed that QED is superficially renormalizable by essentially
dimensional anlysis (= power counting). This is not a rigorous proof that QED
really is renormalizable to all orders of perturbation theory - it is only suggestive
that it might be. However, one can show rigorously that QED is renormalizable to
all orders of perturbation theory, although such proofs are very technical [310].

- The same is true for the strong interactions of quantum chromodynamics (QCD)
and the electroweak interactions: One (more precisely: GERARD T HOOFT)
can prove (to the standards of theoretical physicists) that the full Standard Model
is renormalizable to all orders of perturbation theory [311,312]. This yields op-
erationally well-defined quantum field theories for three of the four fundamental
forces of nature:

* Electromagnetic force v/
* Weak force v/
* Strong force v/

3 Why does this procedure fail for gravity?

After this preliminary work, the question to answer is clear:

.
1

Is GENERAL RELATIVITY- defined by the Einstein-Hilbert action - renormalizable?

< Pure gravity — Einstein-Hilbert action Eq. (12.54) with k := V167 G:

1
Senlg] = p / d4x\/§R (14.16)

Problem: This is not in the form S¢ + Sy required for perturbation theory!

This means that we cannot simply declare the gravitational constant k2 o G as the coupling
parameter and draw conclusions from its mass dimension.

Note that due to the non-linearity of the Einstein field equations, pure gravity (without
matter) is already an interacting field theory that must be solved perturvatively.

Expand Eq. (14.16) around static background spacetime:

guw = Nw + Khy (14.17)
SN—— SN——
Background Quantum

fluctuations

The choice to rescale the field by « is covenient to bring the action - below into the standard
form needed for perturbation theory.

Eq. (14.17) —
VEZ 14 RS Ep fhY — R O (14.183)
R Z kd®h*, —kd,0,h™ + O(h®) (14.18b)
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Expanding the Einstein-Hilbert action in the fluctuations /,,,, yields:

10" 0o h"” — 19" h,, 9" R,

Swrrl[h é/d4x[
EH[ ] +%auhvvauhoa_%aghlwaffhﬂv

+ K (0h)*h + ... ] (14.19)
~—————

£Lint — Interactions

&£0 — Graviton propagator

o Note that the 2 cancels in the quadratic terms, while coupling constants survive in the
higher-order interaction terms (this is why we rescaled the field in the first place).

e £, should be familiar: You studied this theory on @ Problemset 1 as a first attempt at a
relativistic theory of gravity.

o Here we only write one of the lowest-order interaction terms exemplarily (omitting
indices); it is useful to derive the mass dimension of « from the mass dimension of /2,
(which, in turn, is fixed by the non-interacting quadratic part). That an interaction term
of this form exists follows from Eq. (14.18) via partial integration; see Ref. [313] for
details.

In principle you can start now to derive the Feynman rules from Eq. (14.19) to compute
scattering amplitudes of the Einstein-Hilbert quantum gravity.

When evaluating the path integral (e.g., to compute the propagator), a complication arises:
Eq. (14.19) is a gauge theory [due to the diffeomorphism invariance of Eq. (14.16); © Prob-
lemset 6 and « Section 13.4 and also Eq. (11.103)]. If one naively calculates the path integral
of a gauge theory, all expressions blow up because the gauge orbits don’t oscillate and pro-
duce infinities. To count physically distinct field configuration only once, one has to add a
gauge-fixing term to the Lagrangian. In doing so, one encounters a functional determinant
that leads to new, artificial fields called 1 Fadeev-Popov ghosts. They are a necessary math-
ematical nuisance and expand the list of Feynman rules & diagrams. Because of this, the
interactions of the Einstein-Hilbert action, and the fact that /,,, is a rank-2 tensor field, enu-
merating and evaluating Feynman diagrams of this theory is not fun (even ignoring potential
UV-divergences).

By fixing the gauge appropriately, one can compute the graviton 1 Feynman propagator from
the quadratic part £ of Eq. (14.19) (* Ref. [313]) and finds

F * Nuallvp + NupMve — NuvNap
Dyt 2 el it e

(14.20)

This is nice but eventually futile because the theory contains infinitely many UV-divergencies
that one cannot control (- next).

In Eq. (14.19), « plays the role of the coupling constant that controls graviton-graviton scatter-
ing. Hence its mass dimension determines the renormalizability of GENERAL RELATIVITY:

Dimensional analysis of Eq. (14.19):

o . d=2 , 1419
=M 2 =M — logy [k]=—-1 <0

— « has negative mass dimension!

Here is a sanity check: The gravitational constant can be written as G = hc/m3,_, with
Planck mass mpianck. With# = 1 = c it follows that G has dimensions of M ~2, consistent
with our result above for k = /167 G.
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v | Conclusion:

GENERAL RELATIVITY is superficially non-renormalizable © .

i! This does not prove that the Einstein-Hilbert action is not renormalizable; but if it were,

some sort of unexpected cancellations/symmetries would be necessary (- next).

vi Known results:

One can show that at one-loop level, pure Einstein gravity (no matter fields) has - quite
unexpectedly! - no UV-divergences [314].

However, when matter is involved, the one-loop diagrams of the Einstein-Hilbert action
become UV-divergent, see Ref. [314] for the example of a scalar field (see also references
in Ref. [315]).

Unfortunately, pure Einstein gravity is proven to be UV-divergent at two-loop level
[315,316]. This suggests that no unexpected cancellations/symmetries make the theory
renormalizable.

It is therefore widely believed (though, to my knowledge, not proven) that no unexpected
cancellations occur beyond two-loop order; therefore, Einstein gravity seems to be
perturbatively non-renormalizable.

For an alternative (and pedagogic) explanation for the non-renormalizability of GEN-
ERAL RELATIVITY see Ref. [317].

vii = In a nutshell:

GENERAL RELATIVITY is different from the field theories of the Standard Model in
that its coupling constant has negative mass dimension.

As a consequence, the only systematic procedure to operationally define quantum field
theories (namely: renormalization) does not work for GENERAL RELATIVITY.

However, there is no rigorous proof that GENERAL RELATIVITY cannot be quantized
by another (non-perturbative?) method.

4 | How to circumvent this problem?

Since the conventional method to study quantum field theories fails for GENERAL RELATIVITY,
one needs new methods to tackle the problem. There are two very different approaches:

« Approach 1:

Try to “rediscover” GENERAL RELATIVITY

in some limit of a UV-finite quantum field theory.

Most prominent contender: - String theory (Chapter 15)

String theory does not only claim to provide a path for quantizing the gravitational field, but
also strives to explain the existence and interactions of all other particles (‘“matter”) in a
single, consistent framework. Its aspiration is therefore not only to be a theory of quantum
gravity but a “theory of everything” (ToE). The emergence of GENERAL RELATIVITY is
only one of its aspects.

NICOLAI LANG « INSTITUTE FOR THEORETICAL PHYSICS Il « UNIVERSITY OF STUTTGART

Institute for
i:!oret'cal
] Physics

PAGE

445



In-stitutExw
HiEoret'cal
EX » WHY IS QUANTIZING GRAVITY HARD? Physlcs

« Approach 2:

Try to come up with an alternative (non-perturbative?) method
to quantize the metric field of GENERAL RELATIVITY.

Most prominent contender: ~ Quantum loop gravity

Quantum loop gravity “takes GENERAL RELATIVITY seriously” and directly tries to quan-
tize the theory by discretizing its degrees of freedom and proposing a UV-finite action & path
integral that determine the dynamics of the geometry of spacetime. Quantum loop gravity
(in its basic incarnation) does not contain matter fields; it is “just” a theory of quantum
gravity. In contrast to string theory, quantum loop gravity does not claim to be a “theory of

everything”.

PAGE

446

NICOLAI LANG « INSTITUTE FOR THEORETICAL PHYSICS Il « UNIVERSITY OF STUTTGART



