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↓ Lecture 28 [09.07.24]

13.2. Tests of general relativity in the Solar System

With the Schwarzschild metric at hand, we can finally derive predictions of general relativity that
can be used to distinguish the theory from its non-relativistic predecessor, Newtonian dynamics. Here
we focus on tests and predictions that are applicable to scales within our Solar System. Hence we omit
the cosmological constant (ƒ D 0) and can also safely assume r � rs , so that the singularities of the
Schwarzschild metric can be ignored:

Test 3A:
Gravitational redshift

Section 13.2.4

Test 3B:
Gravitational time dilation
Section 13.2.5

Test 2A:
Light deflection
Section 13.2.2

Test 2B:
Gravitational lensing
Section 13.2.3

Test 1:
Perihelion precession
Section 13.2.1

Test 4:
Shapiro time delay
Section 13.2.6

Einstein introduced and studied 1916 in Ref. [20] (§22, pp. 818–822) what are today known as the“Three
classical tests of general relativity”. He summarized and popularized them 1919 in an article
written for the London Times [213, 214]:

• The perihelion precession of Mercury (→ Section 13.2.1)

• The deflection of light by the Sun (→ Section 13.2.2)

• The gravitational redshift of light (→ Section 13.2.4)

In Einstein’s words [213] (p. 209):

Die neue Theorie der Gravitation weicht in prinzipieller Hinsicht von der Theorie Newtons bedeu-
tend ab. Aber ihre praktischen Ergebnisse stimmen mit denen der Newton’schen Theorie so nahe
überein, dass es schwer fällt, Unterscheidungs-Kriterien zu finden, die der Erfahrung zugänglich
sind. Solche haben sich bis jetzt gefunden

1) in der Drehung der Ellipsen der Planetenbahnen um die Sonne (beim Merkur bestätigt).

2) in derKrümmung derLichtstrahlen durch dieGravitationsfelder (durch die englischenSonnenfinsternis-
Aufnahmen bestätigt).

3) in einer Verschiebung der Spektrallinien nach dem roten Spektralende hin des von Sternen
bedeutender Masse zu uns gesandten Lichtes (bisher nicht bestätigt).

Der Hauptreiz der Theorie liegt in ihrer logischen Geschlossenheit. Wenn eine einzige aus ihr gezo-
gene Konsequenz sich als unzutreffend erweist, muss sie verlassen werden; eine blosse Modifikation
erscheint ohne Zerstörung des ganzen Gebäudes unmöglich.
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13.2.1. Apsidal precession

The first and most famous application of general relativity was and is the explanation of the
anomalous apsidal precession of Mercury’s orbit:

Problem:

Taking into account all known gravitational perturbations (mostly due to other planets) explainsMercury’s
apsidal precession up to a deviation of [215]

�'‹ � .42:56˙ 0:94/
00 per century (13.44)

which remains mysterious in Newton’s theory/.

Solution: general relativity,

The fact that general relativity can be used to compute�'‹ precisely was a triumph for Einstein,
and paved the way for a quick adoption of the theory. Einstein derived�'‹ in his famous paper“Erklärung
der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie” [13], published on 18. November
1915.

If you look sharply at the publication date, you might wonder how Einstein was able to pull off this feat
if his foundational paper“Die Feldgleichungen der Gravitation” [12] (in which he published the Einstein
field equations) appeared later, namely on 25. November 1915. The reason is that he used the“wrong”
equations R�� D ��T�� [which he introduced in Ref. [11] on 11. November 1915 (with a correction
added on 18. November), see Eq. (16b) on p. 800 (remember that Einstein’s notation differs from ours)]
to do the Mercury calculation. Because this calculation rests on the vacuum field equations only, and
G�� D 0 , R�� D 0, these results remained unaffected by his later modification of the field equations.
Einstein writes in Ref. [12]:

Die Feldgleichungen für das Vakuum, auf welche ich die Erklärung der Perihelbewegung des
Merkur gegründet habe, bleiben von dieser Modifikation [the addition of the term 1

2
g��T in the

trace-inverted form Eq. (12.11)] unberührt.

‡ Reminder: The Kepler problem in Newtonian mechanics

Let us first revisit the two-body problem in Newtonian mechanics so that we can compare it to the
modifications due to the Schwarzschild geometry later:

1 | System: ^ Test mass m in gravitational field of heavy massM � m:

We use spherical coordinates .r; �; '/ on Euclidean space to exploit the rotational symmetry.

Rotational symmetry! Conservation of angular momentum! w.l.o.g. � D �
2
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! Lagrangian of test mass:

L D
1

2
m
�
Pr2 C r2 P'2

�„ ƒ‚ …
Kinetic energy

C
GmM

r„ ƒ‚ …
Gravitational

energy

(13.45)

2 | Integration:

Integrating the equations of motion of this system is simplified by exploiting its symmetries:

i | ' cyclic (the Lagrangian does not depend on ')!

d
dt
@L

@ P'
D 0 ) l WD m r2 P'„ƒ‚…

DWh

D const (13.46)

! Angular momentum l is conserved

ii | Eq. (13.45) translation-symmetric in time t !

E WD H D
1

2
m
�
Pr2 C r2 P'2

�
�
GmM

r
D const (13.47)

! Energy E is conserved

iii | Use h D r2 P' D const and assume r D r.'/! Pr D dr
d' P'

The assumption r D r.'/ restricts the set of solutions to the ones we are interested in. There
are of course also radial solutions with ' D const and r D r.t/, but these are not important
for our application to describe planets in the Solar System.

Eq. (13.47)! E D
1

2
m

"�
dr
d'

�2 h2
r4
C
h2

r2

#
�
GmM

r
(13.48)

iv | ^ New radial coordinate u WD 1
r
! u0 WD

du
d' D �

1
r2

dr
d'

Eq. (13.48)! E D
1

2
mh2

h�
u0
�2
C u2

i
�GmMu (13.49)

v | Assume u0 ¤ 0 and derive Eq. (13.49) wrt. ':

Solutions with u0 D 0 imply r D const and correspond to circular orbits.

Eq. (13.49)
d
d'

��! u00
C u $ A with A WD

GM

h2
(13.50)

We will find a similar (but modified) equation of this form in the Schwarzschild geometry.

3 | Solution:

Adding homogeneous solutions to the particular solutionA of Eq. (13.50) yields the general solution:

u D
1

r
D A Œ1C e cos.' � '0/� (13.51)

! ↓ Conic sections

For 0 < e < 1 the orbit r D r.'/ describes an ellipse with perihelion at ' D '0 (w.l.o.g. '0 D 0)
and eccentricity e. For e D 0 one obtains the circular solution with radius A�1.

That Eq. (13.51) describes ellipses for 0 < e < 1 with eccentricity e is not obvious because this
equation is the ↓ polar form of the ellipse equation with ' measured wrt. one of the ↓ foci of the
ellipse. (Remember that we put the heavy mass in the origin r D 0 of our coordinate system.)
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The Kepler problem in Schwarzschild spacetime

We can now tackle the same problem (that is, the motion of a test mass in the gravitational field of a much
heavier body) in general relativity by using…

• … the Schwarzschild metric produced by the Sun (Section 13.1.3).

• … that the test mass follows geodesics in this metric (Section 11.2).

4 | System:

The geodesic equation follows from the Lagrangian: [← Eq. (10.126) ff. in Section 10.3.3]

L D
1

2
g�� Px

�
Px� with Schwarzschild metric g�� (13.52)

^ Schwarzschild coordinates .x0; x1; x2; x3/ D .ct; r; �; '/
Eq. (13.25)
������!

L D
1

2

��
1 �

rs

r

�
c2 Pt2 �

�
1 �

rs

r

��1

Pr2 � r2
�
P�2 C P'2 sin2 �

��
(13.53)

with P� WD d�

d� and proper time � .

• We can parametrize the geodesic with proper time becausem ¤ 0 for the test mass.

• We could also plug the Christoffel symbols Eq. (13.10) [together with Eq. (13.20)] into the
geodesic equation Eq. (10.131) and solve it. Here we follow a more pedestrian (and less
technical) approach to work out the differences to the Newtonian case above.

5 | Equation of motion:

i | ^ Euler-Lagrange equation for x2 D � :

d
d�

�
@L

@ P�

�
�
@L

@�
D 0

ı
() R� C

2

r
Pr P� � P'2 sin � cos � D 0 (13.54)

Solved by � D �
2
D const (without imposing restrictions on the other coordinates!)

As before, this restricts our solutions to the plane with � D �
2
; because of the spherical

symmetry of the problem this no actual restriction.

ii | This choice simplifies the Lagrangian:

Eq. (13.53)
�D �

2
���! L1 D

1

2

��
1 �

rs

r

�
c2 Pt2 �

�
1 �

rs

r

��1

Pr2 � r2 P'2
�

(13.55)

The subscript reminds us that this Lagrangian only describes motions in the � D �
2
plane.

iii | ^ Euler-Lagrange equation for x1 D r
ı
�!�

1 �
rs

r

��1

Rr C
1

2

rs

r2
c2 Pt2 �

1

2

�
1 �

rs

r

��2 rs

r2
Pr2 � r P'2 D 0 (13.56)

This complicated EOM is not needed because we exploit enough integrals of motion (→ below).

iv | Cyclic coordinates x0 D ct and x3 D '! Integrals of motion:

@L1

@.c Pt /
D

�
1 �

rs

r

�
c Pt DW k D const and

@L1

@ P'
D r2 P' DW h D const (13.57)
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v | m ¤ 0
Eq. (11.51)
������! k Pxk2 D g�� Px

� Px� D c2 > 0

With this we restrict our derivation to time-like solutions (as needed for amassive test particle).
The fact that k Pxk2 D const was proven in Eq. (11.3) and is a consequence of x�.�/ describing
a geodesic and � being an ← affine parameter [which is true for all solutions of the geodesic
equation Eq. (10.131)]. That the constant equals c2 selects a specific affine parameter, namely
the proper time � .

g�� Px
�
Px� D c2

13.25
HHH)
�D �

2

�
1 �

rs

r

�
c2 Pt2 �

�
1 �

rs

r

��1

Pr2 � r2 P'2 D c2 (13.58)

vi | Eqs. (13.57) and (13.58)
ı
�!

1

r4

�
dr
d'

�2
C
1

r2

�
1 �

rs

r

��
1C

c2r2

h2

�
�
k2

h2
D 0 (13.59)

Here we assumed P' ¤ 0 (thereby excluding radial motions) and used the chain rule,

Pr2

P'2
D

�
dr
d'

�2
; (13.60)

once again imposing a restriction to solutions of the form r D r.'/.

vii | ^ New radial coordinate u WD 1
r

Eq. (13.59)
ı
�!

�
u0
�2
C u2 D

k2 � c2

h2
C
c2rs

h2
uC rsu

3 (13.61)

Here we used again u0 WD
du
d' D �

1
r2

dr
d' .

viii | Assume again u0 ¤ 0 and derive Eq. (13.61) wrt. ':

Solutions with u0 D 0 imply r D const and correspond to circular orbits.

Eq. (13.61)
d
d'

��! u00
C u D A C

3

2
rsu

2„ ƒ‚ …
cf. (13.50)

(13.62)

with A D GM
h2 and rs D 2GM

c2 .

Note that the new term couples with the length scale rs of general relativity and
makes the differential equation non-linear.

Both the Newtonian source A and the relativistic correction / rs on the right-hand side
include Newtons gravitational constantG. However, only rs contains the speed of light c,
which marks this correction as relativistic.

Perihelion precession in general relativity

6 | Approximate solution:

Up to this point our derivation is exact. However, the differential equation Eq. (13.62) is no longer
linear and hard to solve exactly. Thus we apply some (well justified) approximations to solve it:
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i | Note that Eq. (13.62) can be written as

u00
C

�
1 �

3

2

rs

r

�
u D A (13.63)

so that the deviations of the Newtonian case Eq. (13.50) are controlled by rs
r
.

In the Solar System this ratio is very small:�rs
r

�
Mercury

� 7 � 10�8 (13.64)

Here we used the Schwarzschild radius rs D 3 � 103m of the Sun and the perihelion
r � 4:6 � 1010m of Mercury.

! ^ rsu
2 a perturbation for the Newtonian solution (13.51),

u0 WD A Œ1C e cos'� : (13.65)

! First-order perturbation:

u00
C u � AC 3

2
rsA

2
�
1C 2e cos' C e2 cos2 '

�„ ƒ‚ …
u2

0

(13.66)

Here we inserted the unperturbed solution u0 into the perturbation of the EOM. Solving
this equation yields a first-order correction. One could then reinsert this solution into the
equation and repeat the procedure until one converges to a fixed point – and thereby a solution
of the non-linear equation. For our purpose, the first-order correction is already sufficient.

ii | The eccentricity of most planets is very small (= their orbits are almost circular). For example:

eMercury � 0:2! drop O.e2/ terms!

u00
C u � A � 3rsA

2e cos' (13.67)

Here we also dropped the constant 3
2
rsA

2 on the right-hand side because it can be absorbed
into a (small) shift of the constantA on the left-hand side (whichwill not affect our conclusions
below).

iii | Eq. (13.67) is linear! Use unperturbed solution u0 for ansatz:

u � u0 C u1 )
�
u00
0 C u0 � A

�„ ƒ‚ …
13.50
D 0

Cu00
1 C u1 D 3rsA

2e cos' (13.68)

ı
�! Particular solution:

u1 D
3
2
rsA

2e ' sin' (13.69)

! Solution:

u � u0 C u1
13.65
D A

h
1C e cos' C 3

2
rsA'„ƒ‚…

DW�.'/

e sin'
i

(13.70)
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iv | The prefactor of e sin' is very small:

�.'/ D 3
2
rsA' D 3

�
GM

ch

�2
' � 1 (13.71)

Recall that h D r2 P' [← Eq. (13.57)]. Since the motion of planets is non-relativistic, we can
estimate h � .1AU/2 .2�=1 yr/ � 1015m2=s. Plugging in the other constants and the mass
of the Sun yields 3

2
rsA � 10

�7, which, together with ' 2 Œ0; 2�/ � 1, justifies the following
approximation:

Eq. (13.70)
ı
�! u � A f1C e cosŒ' ��.'/�g (13.72a)

D A
n
1C e cos

��
1 � 3

2
rsA

�„ ƒ‚ …
<1

'
�o

(13.72b)

Here we used cos�.'/ � 1 and sin�.'/ � �.'/, together with the trigonometric identity
cosŒ' ��.'/� D cos' cos�.'/C sin' sin�.'/.

! Rosetta orbit (← Sketch above)

To see that this equation describes a Rosetta orbit note that�.'/ plays the role of an angle-
dependent phase shift. Hence the object follows ellipses that slowly rotate themselves with '
about the focus point in which the central mass resides.

7 | Perihelion precession:

To evolve from one perihelion to the next, the argument of the cosine in Eq. (13.72b) must advance
by 2� (because then the radial distance u D 1

r
is again the same). !

�
1 � 3

2
rsA

�
'1 � 2� , '1 D

2�

1 � 3
2
rsA

Taylor
� 2� C 3�rsA„ƒ‚…

DW�'1

(13.73)

�'1: Angle by which the perihelion advances after one revolution.

Here we used again that 3
2
rsA� 1 is very small.

8 | It is convention to express�'1 in terms of the parameters of the (Newtonian) elliptical orbit (13.51):

r D
`

1C e cos'
with ` WD

1

A
(13.74)

with…

• ↓ eccentricity e,

• ↑ semi-latus rectum `,

• ↓ perihelion distance rmin WD
`
1Ce
D a.1 � e/, and

• ↓ semi-major axis a.

Eq. (13.73)!

�'1 D 3�
rs

`
D

3�

1C e

rs

rmin
D

6�GM

c2rmin.1C e/
D

3�rs

a.1 � e2/
(13.75)
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• If a (b) is the semi-major (semi-minor) axis of an ellipse, and the focal points are at jcj WD
p
a2 � b2 on the x-axis, the eccentricity is given by e WD c

a
D
p
1 � b2=a2. In our context,

the perihelion distance is then rmin WD a � c D a.1 � e/. The parameter ` in the polar
representation is given by ` WD rmin.1C e/ D a.1� e

2/ D b2

a
and called ↑ semi-latus rectum:

• For Mercury we have rmin � 4:6 � 1010m and e � 0:206, and the Schwarzschild radius
of the Sun is rs � 2952m. Plugging in the numbers in Eq. (13.75) yields �'1 � 0:10300,
which is extremely small and not measurable. However, for each revolution around the Sun
this shift accumulates, so that the effect amplifies over time. This is why the perihelion
precession is typically measured in angular advance per 100 years. The orbital period of
Mercury is T � 0:241 yr which leads toN � 415 revolutions per century. The prediction
of general relativity for the perihelion advance of Mercury is then:

.�'/Theory � 43:0
00 per century (13.76)

Subtracting all known Newtonian effects (mostly due to planetary perturbations, this contri-
bution is� 53200 per century, i.e., much larger than the relativistic effect) from the observed
precession results in an unexplained difference of [215]

.�'/Observation D .42:56˙ 0:94/
00 per century (13.77)

(amore recent analysis can be found in [216]). To comment this result in Einstein’s words [13]:

Die Rechnung liefert für den Planeten Merkur ein Vorschreiten des Perihels um 4300

in hundert Jahren, während die Astronomen 4500 ˙ 500 als unerklärten Rest zwischen
Beobachtungen und Newtonscher Theorie angeben.

Dies bedeutet volle Übereinstimmung.

• Since the general relativistic perihelion precession scales with rs
rmin

and accumulates with
each revolution around the Sun, it is understandable that the effect was first observed for
Mercury, the planet with the smallest perihelion distance (� 0:31AU) and the shortest
orbital period (� 0:24 yr). Nowadays one can measure the (considerably smaller) effect also
for Venus and Earth.

• Compare this to your results of → Problemset 1 where you studied relativistic, non-metric,
linear theories of gravity:

For the scalar theory you found

.�'1/Scalar D �
2�GM

c2rmin.1C e/
; (13.78)

which has both a wrong sign and a wrong prefactor compared to Eq. (13.75).

For the linear tensor theory you found

.�'1/Tensor D
8�GM

c2rmin.1C e/
; (13.79)
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which has now the correct sign but still a wrong prefactor compared to Eq. (13.75).

These comparisons explain why we claimed that these theories make wrong predictions.

• Compare Eq. (13.75) with Einstein’s result in Ref. [13] [Eq. (13) on p. 838]. Note that Einstein
did not (and could not) know about the Schwarzschild solution at the time; he therefore
employed approximate techniques to construct an appropriate metric. Since we also made
approximations in the same order, the results coincide.

13.2.2. Deflection of light

We now study the second of Einstein’s classical tests of general relativity: the deflection of light
in the gravitational field of heavy bodies.

1 | Light rays follow null geodesics [← Eq. (11.5)]

We could now plug the Christoffel symbols of the Schwarzschild spacetime Eq. (13.10) [together
with Eq. (13.20)] into the geodesic equation Eq. (10.131) and solve it for light-like/null trajectories
(← Eq. (11.5)).

2 | There is a simpler method, though:

We can exploit our results formassive test particles in Section 13.2.1 to directly obtain the differential
equation that describes null geodesics in the � D �

2
plane. The trick is that the geodesics of these

particles must continuously morph into the null geodesics of light rays in the limit m ! 0 (for
constant momentum).

^ Eqs. (13.46) and (13.57): l D hm D mr2 P'! Orbital angular momentum

Light (photons) has momentum (p D „k) but no mass (m D 0).

! lim
m!0

l D lim
m!0

hm
Š
> 0! lim

m!0
h D1! lim

m!0
A D lim

m!0

GM
h2 D 0

With this limit we find:

Eq. (13.62)
m!0
���! u00

C u D
3

2
rsu

2 with u D
1

r
and u00

D
d2u

d'2
(13.80)

3 | Solution:

We solve Eq. (13.80) perturbatively along the same lines as in Section 13.2.1:

i | ^ Homogeneous/linear part of Eq. (13.80):

u00
0 C u0 D 0 ) u0 D

1

r
D
1

b
sin.' � '0/ (13.81)

Here, b and '0 parametrize the initial state.

We set w.l.o.g. '0 D 0 in the following. (Because of rotation symmetry.)

^ u0 in Cartesian coordinates: (Note that b D r sin' D const for the solution u0.)

Ex.'/ �

�
x

y

�
WD

�
r cos'
r sin'

�
13.81
D

�
b cot'
b

�
(13.82)

! “Straight line” with ⁂ impact parameter b
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The solution describes a horizontal line parallel to the x-axis that goes from x D C1 for
' D 0 to x D �1 for ' D � and passes by the origin (where the Sun would be) at distance b.

¡! The trajectory u0 does not solve the geodesic equation Eq. (13.80) of the Schwarzschild
spacetime; it is therefore not a “straight line” (= autoparallel curve) in this metric. Only in
the special case whereM D 0 ) rs D 0 (i.e., when the Sun is gone) does u0 describe the
trajectory of light rays correctly. This is consistent as in this situation spacetime is flat and
we would expect light to follow straight lines in Cartesian coordinates (which one can choose
globally on a flat spacetime).

ii | Perturbative equation:

We plug in the unperturbed solution u0 for the non-linear perturbation in Eq. (13.80):

u00
C u � 3

rs

2b2
sin2 ' (13.83)

ı
�! Particular solution:

u1 D
rs

2b2

�
1C cos2 '

�
(13.84)

iii | ! First-order solution:

u D
1

r
� u0 C u1 D

1

b
sin' C

rs

2b2

�
1C cos2 '

�
(13.85)

4 | We can again introduce spatial “Cartesian” coordinates: !

y D r sin' 13.85
D b �

rs

2b
r
�
2 cos2 ' C sin2 '

�
13.82
D b �

rs

2b

2x2 C y2p
x2 C y2„ ƒ‚ …

New! Cf. Eq. (13.82)

(13.86)

! No longer “straight lines” in “Cartesian” coordinates!

5 | ^ Asymptotic behavior for x !˙1:

y � b �
rs

b
jxj (13.87)

Do not forget the absolute value when evaluating x2=
p
x2!

This result an be illustrated as follows:
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! Deflection angle: (use the small angle approximation tan˛ � ˛)

ı D 2˛
˛�1
� 2

rs

b
D
4GM

c2b

Sun
�

1:7500

b=Rˇ

(13.88)

HereRˇ denotes the radius of the Sun.

• ¡! We established above that forM D 0 we can use Cartesian coordinates to describe the
trajectory of the light ray on flat Minkowski space. Once we switch on gravity (M ¤ 0),
we can of course still use the coordinates .x; y/, defined via Schwarzschild coordinates
.r; '/ in the usual way. However, we cannot simply assume that they continue to have metric
meaning (i.e., areCartesian)! (Recall that r has no directmetricmeaning in the Schwarzschild
geometry either [← Eq. (13.33)].) Thus the fact that Eq. (13.86) no longer describes a“straight
line” in .x; y/ coordinate space has no physical interpretation a priori.

Luckily, we usually observe celestial bodies from far away (and the light deflected by them
reaches them from far away). Since we know that the Schwarzschild metric induced by
these objects is asymptotically flat, we can study the light long before and after it entered the
gravitational field of these objects. In these regions, spacetime is approximatelyMinkowskian,
and the coordinates .x; y/ are approximately Cartesian (they are spatial components of an
inertial coordinate system which, as discussed in Section 1.1, carries metric information).
Since the angle Eq. (13.88) is defined between two straight lines in this region of space, it has
physical meaning and observable effects (→ below and Section 13.2.3).

• The predicted deflection of light that passes close by the Sun (b � Rˇ ) ı � 1:7500) was
first measured by Arthur Eddington and collaborators during their famous expedition
to West Africa (Príncipe) and Brazil (Sobral) [217], where they exploited the solar eclipse
on 29. May 1919 to observe stars that are visible close to the solar disk only when it is
covered by the moon (↑ Eddington experiment). In their paper, they distinguish three possible
outcomes: (1) light is not deflected by gravity, (2) light is deflected by the Newtonian angle
ı=2 � 0:8700 (→ below), or (3) light is deflected by the angle ı � 1:7500 predicted bygeneral
relativity. They summarize their meticulous analysis as follows (p. 332):

Thus the results of the expeditions to Sobral and Principe can leave little doubt that a
deflection of light takes place in the neighbourhood of the Sun and that it is of the amount
demanded by Einstein’s generalised theory of relativity, as attributable to the Sun’s
gravitational field.

This result mad headlines all over the world, contributed to the wide acceptance ofgeneral
relativity, and catapulted Einstein to fame.

For a review of various experimental results (up to 1960) regarding the deflection of light see
Ref. [218]. The precision of the Eddington experiment was rather low (and its significance
later debated, see Ref. [219] for a review). However, later variations of the experiment that
used radio waves instead of light verified the predictions of general relativity to
very high precision. Ref. [220], for example, reports only a deviation of ımeasured=ıpredicted D

1:007˙ 0:009 from the predictions of general relativity.

• In the aftermath of establishing special relativity, Einstein studied uniformly acceler-
ated frames of reference and already proposed the equivalence principle, equating uniform
acceleration with uniform gravitational fields. This led him 1907 to the prediction that light
must be deflected by gravity. He states in Ref. [95] (p. 212):

Es folgt hieraus, daß die Lichtstrahlen, […], durch das Gravitationsfeld gekrümmt
werden; […]
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Later, in 1911, Einstein elaborated on this idea in his paper“Über den Einfluß der Schwerkraft
auf die Ausbreitung des Lichtes” [103] and predicted the deflection angle

ıNewton D
2GM

c2b
D
ı

2
; (13.89)

which is exactly half the prediction (13.88) of general relativity. He evaluates it for a
light ray that skims the Sun and concludes (p. 908):

Ein an der Sonne vorbeigehender Lichtstrahl erlitte demnach eine Ablenkung vom
Betrage 4 � 10�6 D 0:83 Bogensekunden.

The result (13.89) can be obtained by postulating that Newtonian gravity also affects light
rays because, according to special relativity, photons have a “dynamical mass”m D
E=c2 D h�=c2. Due of the universality of free fall, the trajectory of a particle that shoots by
the Sun (and is on an unbound trajectory) only depends on its initial velocity and position
(and not its mass). It is then reasonable to postulate that the same trajectories are followed
by photons with c as initial velocity. This purely Newtonian calculation (with appropriate
approximations) yields the deflection angle Eq. (13.89).

In the course of completinggeneral relativity in 1915, Einstein realized that the actual
deflection angle predicted by general relativity is twice his original prediction of 1911.
He presented his results in a meeting of the Prussian Academy of Science on 25. March
1915 [221] and published the calculation of the correct deflection angle (13.88) in his famous
1916 paper [20] (which sums up the results accumulated during 1915).

Fun fact: While the deflection angle 1:700 is correctly stated in Ref. [20], the corresponding
equation (74) on page 822 is actually off by the important factor of 2 due to a printing error;
it should read B D 2˛

�
D

�M
2��

with � D 8�K
c2 , where K denotes Newton’s gravitational

constant, B is the deflection angle, and� the impact parameter [222].

The difference between Newtonian and generally relativistic predictions of the deflection
angle can be traced back to the curvature of space that is missing in the former (Newtonian
space is Euclidean) and included in the latter [due to the factor .1 � rs=r/�1 for dr in
the Schwarzschild metric (13.25), recall Eq. (13.33) ff ]. Note that because of Eqs. (11.64)
and (11.65), the prefactor .1� rs=r/ of dt in (13.25) is responsible for reproducing Newtonian
physics; it is then the additional prefactor .1� rs=r/�1 of dr that is responsible for doubling
the deflection angle in the Schwarzschild metric.

13.2.3. Gravitational lensing

A direct consequence of the deflection of light is that large masses can act as“lenses” for distant observers:

6 | Example: Here we consider the most symmetric (and rarest) scenario:

^ Collinear constellation with…

• light source S (e.g., a galaxy),

• heavy mass/lens L (e.g., another galaxy),

• observer O (a telescope on Earth).
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Axial symmetry! Point source appears ring-shaped !⁂ Einstein ring

! Straightforward linearized trigonometry leads to the angular size of the Einstein ring:

�E $

s
4GM

c2
�
dLS

dLdS
⁂ Einstein angle (13.90)

For details: ↑Carroll [102] (§8.6, p. 349 ff.).

• ¡! Because of the 1=b dependence of the deflection angle (13.88), gravitational lenses do not
have a focal point but a focal line (along the optical axis, behind the lens). Thus, strictly
speaking, gravitational lenses are no lenses:

• If source and/or observer are slightly off-axis, the Einstein ring typically breaks into two
copies of the imaged object. If the alignment is almost perfect, the ring can morph into a
“horseshoe Einstein ring”, as shown in Fig. 13.1 (a). When the lens breaks the rotational
symmetry (think of an elongated galaxy), the image can consist of four copies of the same
object, called an ↑ Einstein cross [Fig. 13.1 (b)]. Typical constellations are even less symmetric
and produce a warped mess, as shown in Fig. 13.1 (c).

• That massive bodies can act as“gravitational lenses”was discussed by Einstein in 1936 [223].
Since Einstein considered stars as lenses, he came to the conclusion that the effect was way
too small to be observable:

Therefore, there is no great chance of observing this phenomenon, even if dazzling by the
light of the much nearer starB is disregarded.

However, one year later, Fritz Zwicky suggested that galaxies might be massive enough
to cause observable lensing effects [224]. The first gravitational lens (indeed caused by a
galaxy) was then observed in 1979 [225] (the ↑ Twin Quasar, a single quasar that appears
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twice due to a gravitational lens). The first complete Einstein ring was observed later (in
1997) by the Hubble telescope in the infrared [226].

Nowadays, a plethora of gravitational lenses have been identified (→ Fig. 13.1).

7 | Observations:

Here a few examples of observed gravitational lenses:

Figure 13.1. • Gravitational lenses: (a)A horseshoe Einstein ring photographed by Hubble in 2011:
“The gravity of a luminous red galaxy in the foreground has gravitationally distorted the light from a
much more distant blue galaxy.” [227] (b) An ↑ Einstein cross photographed by Hubble in 2012:
“The foreground galaxy’s gravity acts as a lens that bends and amplifies the light from a quasar behind
it, producing four images of the distant object.” [228] (c) A large gravitational lens photographed
by the James Webb Space Telescope in 2023: “A galaxy cluster in the foreground has magnified
distant galaxies, warping their shapes and creating the bright smears of light spread throughout this
image.” [229]

8 | Applications:

Nowadays, gravitational lensing is used as a tool in astronomy:

For more details: ↑ Ref. [230].

• ↑ Microlensing: Gravitational lensing of background light sources by small, mostly invisible
objects (like exoplanets, neutron stars, black holes…) can be used to detect and study them.
These objects are too light to cause observable distortions of the image; however, lensing
also changes the apparent brightness of the background object – and changes in brightness
over time can be detected even if the lensing itself cannot be resolved.

• ↑ Weak lensing: The lensing that produces Einstein rings and multiple images of the same
object is called ↑ strong lensing (and is quite rare). In most directions of space, there are no
observable strong lensing phenomena. By contrast, weak lensing describes the slight and ubiq-
uitous “warping” of background sources by the foreground mass distribution. This warping
can be used statistically to gain information about the (often invisible) mass distribution in the
foreground [recall the blue ↑ lensing map used to study the ← Bullet cluster in Fig. 12.1 (c)].

• Since strong gravitational lenses can magnify extremely distant objects, it has been hypoth-
esized to use the Sun as a “telescope” [231]. The problem with this proposal is that the
nearest point on the half-infinite focal line of the Sun is about 550AU (astronomical units =
Sun-Earth distances) away – and this is where a space-borne observatory would have to be in
order to use the Sun as a lens. For comparison, Voyager 1 is with only� 164AU the most
distant spacecraft we managed to deploy.
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13.2.4. Gravitational redshift

Based on the conservation of energy, and the possibility to create and annihilate particles from and into
photons (reflecting the equivalence of mass an energy), we already concluded in Section 8.3 that the
wavelength of light that escapes a gravitational potential must increase, i.e., the light must be redshifted.
Here we finally confirm this prediction within the full framework of general relativity:

1 | ^ Stationary emitter E at ExE and receiver R at ExR in a static metric:

Definition of a static metric: ← Eq. (11.136) in Section 11.5.

The following derivation does not rely on the Schwarzschild metric; we will specialize to this
particular metric later.

2 | ^ Light signal emitted by E at tE and received by R at tR:

The light follows a light-like trajectory. ! ds2 D 0
Eq. (11.136)
�������!

ctR � ctE D c

Z tR

tE

dt D
Z

PER

r
�gij

g00
dxidxj„ ƒ‚ …

Independent of t

(13.91)

PER is the spatial path followed by the light signal from ExE to ExR.

3 | ^ Second light signal from E to R:

Metric static! Signal follows the same path PER
Eq. (13.91)
������!

ctR � ctE„ ƒ‚ …
first signal

D ct 0R � ct
0
E„ ƒ‚ …

second signal

, �tR WD t
0
R � tR D t

0
E � tE DW �tE (13.92)

This means that the coordinate time differences between the first and the second signal are the same
for both emitter and receiver!

Assume that at the first signal a laser is switched on, and on the second signal it is switched off.

Let there be n oscillations of the electromagnetic field emitted by E and received by R!

n

�tR

13.92
D

n

�tE
(13.93)

¡! This is the coordinate frequency of the light atR andE, not the measured frequency!

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



GR → APPLICATIONS & PREDICTIONS

389
PAGE

4 | Proper time d� D c�1ds measured at the position of E andR:

��E=R
11.136
D

q
g00.ExE=R/�tE=R (13.94)

Recall that we assumeE andR to be stationary in the chosen coordinates x� D .ct; Ex/.

!With this we find for the measured frequencies of the emitted and received light:

�R

�E
D
n=��R

n=��E

13.94
D

s
g00.ExE /

g00.ExR/
�
n=�tR

n=�tE

13.93
D

s
g00.ExE /

g00.ExR/
(13.95)

5 | So far we only used that the metric is static; now we specialize to the metric of a spherical mass:

^ Schwarzschild metric Eq. (13.25)!

�R

�E
D

s
1 � rs=rE

1 � rs=rR
or 1C ´ WD

�R

�E
D

s
1 � rs=rR

1 � rs=rE

with ⁂ Redshift parameter ´

(13.96)

For rR > rE it follows �R > �E , ´ > 0 ! ⁂ Gravitational redshift

• The gravitational redshift was first experimentally probed and verified by Robert Pound
andGlen Rebka in 1960 with their famous ↑ Pound-Rebka experiment [104, 105]. The
experiment was conducted in a laboratory on Earth and exploited the extremely high spectral
resolution provided by the ↑ Mößbauer effect.

• The gravitational redshift also affects photons emitted by the Sun and received on Earth.
This particular probe of the redshift has been successful as well [232], but is complicated by
the motion of the emitting atoms on the Sun (which causes random Doppler shifts).

6 | Approximations:

• In many situations it is rs

r
� 1! Newtonian approximation:

1C ´
ı
� 1C

rs

2

�
1

rE
�
1

rR

�
(13.97)

To show this, expand Eq. (13.96) in first order of rs=rE and rs=rR.

Let rR D rE C�h with height difference �h� rE !

1C ´
Taylor
� 1C

rs

2
�
�h

r2E
D 1C

GM

r2E„ƒ‚…
Dg

�
�h

c2
D 1C

g�h

c2
(13.98)

Here g is the gravitational acceleration at the emitter (and receiver, since�h� rE ).

! Same result as Eq. (8.14) in Section 8.3,

We therefore confirmed our previous derivation in the Newtonian limit. The fact that light
is affected by gravity (and redshifted if it leaves a gravitational potential) is therefore not a
consequence of the particular structure of the Einstein field equations (we didn’t now about
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them in Section 8.3), but follows from the principles of special relativity, together
with the EEP of general relativity.

This explains howEinstein could predict the gravitational redshift in 1907 (p. 209 of Ref. [95])
without knowing about curved spacetime. However, this approach is only applicable to
homogeneous gravitational fields (which is often justified on Earth). The exact value of the
redshift for light that traverses large distances (and thereby probes the non-homogeneity of
gravitational fields), and/or comes close to the Schwarzschild radius, can only be computed
with the machinery of general relativity as applied above (including the EFEs).

• In astronomical scenarios, the emitters are often excited atoms close to the surface of a star,
so that rE D R� with R� the radius of the star. Telescopes on Earth are the receivers, so
that usually rR !1 is a good approximation. One then finds for the ← redshift parameter ´:

1C ´
13:96
�

�
1 �

rs

R�

�� 1
2

(13.99)

Such redshifts can be measured by spectroscopy since we know the optical transitions of the
elements that serve as emitters (e.g., hydrogen). Spectroscopic analysis of the light emitted
by a star then reveals the redshift by comparison with the wavelength one would measure for
the same elements in a laboratory on Earth.

Beware: The situation is significantly complicated by various other phenomena that can
change the wavelength of light. For example, relative motion leads to the ↓ Doppler effect.
Furthermore, the metric of our universe is not a static Schwarzschild metric but describes an
expanding spacetime. This leads to an additional ↑ cosmological redshift that depends on the
time the light requires to reach us.

13.2.5. Gravitational time dilation

The gravitational time dilation Eq. (13.94) causes the gravitational redshift discussed in Section 13.2.4. We
also covered it in our discussion of the role played by the Schwarzschild time coordinate [← Eq. (13.27)].
So all important mathematical results have already been stated before:

7 | ^ Two stationary clocks A=B located at Exi D .ri ; �i ; 'i / (i D A;B):

The clocks are stationary in Schwarzschild coordinates.

Measure proper time between the same coordinate time slices t and t C�t
Eq. (13.94)
������!

��A

��B

13.94
D

s
g00.ExA/

g00.ExB/

13.25
D

s
1 � rs=rA

1 � rs=rB
(13.100)

rB > rA ) ��B > ��A ! ⁂ Gravitational time dilation

To understand why and how B “sees”A tick slower: → below.

• Like the gravitational redshift, gravitational time dilation is not a probe for the validity of the
Einstein field equations (at least if applied in the weak field limit) but of the EEP . That is, the
effect can be derived from assuming the validity of special relativity together with
the equivalence principle.

This explains how Einstein could predict the gravitational time dilation already in 1907
(p. 208-209 of Ref. [95]).
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• Recall that special relativistic time dilation (← Section 2.2) is symmetric in that two (inertial)
observers both measure the clock of the other tick slower. This symmetric effect is somewhat
artificial because it relies on the comparison of different clocks – which makes apparent the
relativity of simultaneity. To compare two clocks that travel different paths twice, at least one
had to be accelerated (in Minkowski space!), recall our discussion of the twin “paradox” in
Section 2.4. In this scenario, the effect was no longer symmetric and both observers agreed
on their relative time delay. Gravitational time dilation is a generalization of this phenomenon
to curved spacetime. It is also asymmetric in that an Earth-bound observer sees the clock of
an asymptotically distant observer run faster, whereas this observer sees the Earth-bound
clock run slower.

• The slowdown of time becomes extreme if one approaches the Schwarzschild radius. As
already discussed, this is impossible for“normal” objects like planets and stars, which is why
the scenario is irrelevant for physics in the solar system. However, if we could approach the
event horizon of a black hole (we don’t have to reach it, being nearby r & rs is enough), the
effect of gravitational time dilation can become arbitrarily large.

Fun fact: This effect is one of the main plot points of the 2014 movie Interstellar. In
the movie, the protagonists land on“Miller’s planet” – a planet that orbits a supermassive
black hole – where one hour proper time corresponds to seven years proper time at r !1
(e.g., on Earth). If you stay too long (say one day) and fly back to Earth, everyone you knew
will be long dead/.

8 | To understand how stationary observers at different locations (in Schwarzschild coordinates)“see”
clocks tick, consider the following setup:

(This is the sketch from Section 13.1.3, reprinted for your convenience.)

Let A be a stationary clock in the gravitational field at rA and B a clock at spatial infinity (“far
away”): rB ! r1 D 1. Assume A sends the reading of its clock at coordinate times t1A and t2A
with radio signals to B . Because the Schwarzschild metric is static, the spacetime trajectories of
the two signals are congruent, so that the coordinate time differences�t between the two signals
are the same for A and B [see sketch, mathematically this follows from Eq. (13.92)].

But the two clock readings sent by A differ by

��A D

r
1 �

rs

rA
�t D

r
1 �

rs

rA
��1 < ��1 ; (13.101)

which is less than the time��1 elapsed for B between the two messages.
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! B concludes that the clock A runs slower!

9 | Weak-field approximation:

^ Weak-field limit rs

r
� 1: Eq. (13.100)

Eq. (13.97)
������!

��A

��B
� 1 �

rs

2

�
1

rB
�
1

rA

�
(13.102)

! Relative tick rate:

�T

T
�
��A ���B

��B

13:102
�

rs

2

�
1

rB
�
1

rA

�
13:98
�

g�h

c2
(13.103)

with gravitational acceleration g D GM

r2
B

.

Here we used rA D rB C�h with height difference�h� rB as in Eq. (13.98).

If we use g D 9:81m2=s and the height of Mount Everest�h D 8848m, we find�T=T � 10�12

for the relative frequency difference between a clock on sea level and one on the summit. This
variation is small but well within the precision of modern atomic clocks (→ below).

10 | Experiments:

• The space-born ↑ Gravity Probe A experiment (1976) was one of the first to directly measure
the effect of gravitational time dilation [233]. It confirmed the prediction of general
relativity to high precision.

• For the←Hafele-Keating experiment (1971), the gravitational timedilation due to the difference
in height between the airplanes and the ground-based reference clock had to be taken into
account to match observation and theory [46,47]; recall → Problemset 5.

• Modern ↑ optical atomic clocks are precise enough to directly measure the gravitational time
dilation simply by lifting them a few centimeters [234]:

Figure 13.2. • Gravitational time dilation measured by optical clocks: In 2010, the precision
of optical clocks (a modern variety of atomic clocks) reached levels that allowed for the direct
verification of the gravitational time dilation by elevating one clock by 33 cm (between mea-
surement numbers 13 and 14 in panel B) [234]. The frequency (tick rate) of the clock clearly
increases, as predicted by general relativity.

• The recent development of smaller and more robust optical clocks gave birth to the new
field of ↑ relativistic geodesy, i.e., the mapping of Earth by using optical clocks to measure
heights by proxy of gravitational time dilation (see Ref. [235] and references therein). Note
that gravitational time dilation does not actually measure heights (with respect to whatever)
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but the gravitational potential. This means that the tick rate of your clock also changes when
you are above a geological anomaly with higher/lower average mass density (which is also
valuable information):

Figure 13.3. • Relativistic Geodesy: By now, optical clocks have become small enough so that
one can use them to measure hights [235]; this establishes the field of ↑ relativistic geodesy:
the measurement of differences in the gravitational potential by exploiting generally relativistic
effects and our technological ability to measure times extremely precisely.

• Famously, both special relativistic (← Section 2.2) and gravitational time dilation are relevant
effects that must be taken into account for the ↑ Global Positioning System (GPS) to work.
The system is based on a fleet of satellites equipped with atomic clocks that broadcast their
time (plus additional data) to Earth; these timestamps can be used by Earth-bound receivers
to calculate their position relative to (at least) three satellites. Special relativistic time dilation
makes the clocks of the satellites run slower with respect to stationary clocks on Earth,
whereas gravitational time dilation makes them run faster. For the orbit of GPS satellites,
the gravitational time dilation dominates, so that their clocks run faster than Earth-bound
clocks. This effect (among others) must be taken into account for the system to function; see
Ref. [236] for details.
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13.2.6. Shapiro time delay

Besides the three classical tests of general relativity (perihelion precession, deflection of light /
lensing, gravitational redshift / time dilation), there is is a fourth test proposed 1964 by Irwin Shapiro
[237]: Light that travels through the gravitational field of a heavy mass takes a bit longer than it would
without the mass:

1 | ^ Radar signal bounced between Earth and satellite (or another planet):

For a strong effect, the satellite must be in (approximate) ↑ superior conjunction with Sun, such that
the signal passes close to the Sun and experiences a strong gravitational field.

Question: How much time elapses on Earth during a round trip of the signal?

To simplify calculations, we make the following (justified) approximations:

• The deflection of the signal is small and can be neglected.

• The radar signal is fast so that we can consider all bodies as stationary.

• The time elapsed on Earth is assumed to be approximately Schwarzschild coordinate time.

2 | ^ � D �
2
plane

Eq. (13.25)
������!

ds2 D
�
1 �

rs

r

�
d.ct/2 �

�
1 �

rs

r

��1

dr2 � r2d'2
Light
D 0 (13.104)

Light/radar ray follows (approximately) straight line y D r sin' D b D const
ı
�!

d.ct/2 D
��
1 �

rs

r

��2

C

�
1 �

rs

r

��1 b2

.r2 � b2/

�
dr2 (13.105)

To show this use 0 D db D sin' dr C r cos' d' and tan2 ' D b2=.r2 � b2/.

3 | Take root & expand in linear order of rs
r

ı
�!

d.ct/ �
drq
1 � b2

r2

�
1C

rs

r
�
1

2

rsb
2

r3

�
(13.106)
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4 | Integration along path .x; y D b/ for x 2 Œ�xP ; xE �
ı
�!

c QT D

� cT‚ …„ ƒ
xP C xE„ ƒ‚ …
Euclidean
distance

C rs ln
.rP C xP /.rE C xE /

b2
�
rs

2

�
xP

rP
C
xE

rE

�
„ ƒ‚ …

Additional time delay due to gravity ! Shapiro delay

(13.107)

Since r is not single-valued on the trajectory from Earth to the satellite, one has to add up the
integrals from rE to r D b (segment xE ) and from r D b to rP (segment xP ). To derive the result,

use xi D
q
r2i � b

2 for i D E;P .

2 QT : (Coordinate) time for round trip of signal with Sun (rs > 0)
2T : (Coordinate) time for round trip of signal without Sun (rs D 0)

Ignoring the gravitational time dilation on Earth (due to the gravitational field of the Sun), 2 QT is
approximately the time measured by a clock on Earth for a round trip of the signal.

5 | Let �T WD QT � T and assume rE ; rP � b so that xE � rE and xP � rP !

�T �
rs

c

�
ln
4xPxE

b2
� 1

�
> 0 ⁂ Shapiro time delay (13.108)

! Light travels slower in a gravitational field than in flat Minkowski space!

¡! This slowdown is“seen”by an observer at infinity (it is a slowdown in the Schwarzschild coordinate
velocity); in every local inertial frame the speed of light remains constant (namely c, ← Section 11.1).

• The effect is more pronounced for smaller impact parameters b; this explains why approxi-
mate superior conjunction is needed to measure the effect.

• To be fully correct, one has to translate the coordinate time delay Eq. (13.108) via Eq. (13.94)
into the proper time delay measured by clocks on Earth (using the Schwarzschild metric of
the Sun). We omit this correction here because it is irrelevant for understanding the Shapiro
effect qualitatively.

• To get a feeling for the magnitude of the effect, let us assume we bounce radar signals off
Mercury (xP � 5:8 � 1010m) and receive them on Earth (xE � 14:9 � 1010m). The
smallest impact parameter possible is the radius of the Sun: b � 6:96 � 108m. With the
Schwarzschild radius rs � 3�103m (of the Sun) one finds a one-way delay of�T � 102 µs,
which is of course well within the capabilities of modern clocks.

• The relativistic time delay was proposed by Irwin Shapiro as a fourth test of general
relativity in Ref. [237]. First results were obtained by reflecting radar signals off Venus
and Mercury [238, 239] and confirmed the predictions of general relativity. The
most precise measurement thus far was obtained by monitoring the radio link of the Cassini
spacecraft; these measurements confirmed the predictions of general relativity with
a relative deviation of only� 2 � 10�5 [240].
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