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↓ Lecture 27 [02.07.24]

13. Applications & Predictions

Now that the framework of general relativity is fully developed, we can start using it. As already
mentioned, solving the Einstein field equations is hard, and in most realistic scenarios impossible. This
is why we focus on the simplest and most symmetric settings – which still does not save us from mathe-
matical complexity. Thus, instead of struggling with conceptual subtleties, we will mostly fight technical
(mathematical) issues in this chapter.

¡! Studying applications and predictions of general relativity is a vast topic, deserving its own
course. This chapter only scratches the surface of this multifaceted (and active) field of research.

A comprehensive review of experimental tests of general relativity can be found in Ref. [201].

13.1. The gravitational field of a spherical mass

The first (and most important) exact solution of the Einstein field equations was obtained by German
physicistKarl Schwarzschild at the end of 1915, only a few weeks after Einstein published his field
equations; the so called → Schwarzschild metric was published in January 1916 [202]. Schwarzschild found
his solution while serving in the German army (during World War I); he died only a few months later in
May 1916 (due to a disease he developed at the Russian front).

Here is how Schwarzschild sells his solution in Ref. [202] (§2):

Hr. Einstein hat gezeigt, daß dies Problem [der sphärisch symmetrischen Massenverteilung] in
erster Näherung auf das Newtonsche Gesetz führt [← Section 12.1.1] und daß die zweite Näherung
die bekannte Anomalie in der Bewegung des Merkurperihels richtig wiedergibt [→ Section 13.2.1].
Die folgende Rechnung liefert die strenge Lösung des Problems. Es ist immer angenehm, über
strenge Lösungen einfacher Form zu verfügen [recht hat er ,]. Wichtiger ist, daß die Rechnung
zugleich die eindeutige Bestimmtheit der Lösung ergibt, über die Hrn. Einsteins Behandlung
noch Zweifel ließ, und die nach der Art, wie sie sich unten einstellt, wohl auch nur schwer durch ein
solches Annäherungsverfahren erwiesen werden könnte. Die folgenden Zeilen führen also dazu,
Hrn. Einsteins Resultat in vermehrter Reinheit erstrahlen zu lassen.

Einstein was surprised that Schwarzschild succeeded so quickly in deriving an exact solution for his field
equations. He writes on 29. December 1915 [203] in a letter to Schwarzschild:

Ihre Rechnung, die den Eindeutigkeitsbeweis für das Problem liefert, ist höchst interessant. Hof-
fentlich veröffentlichen Sie dieselbe bald! Ich hätte nicht gedacht, dass die strenge Behandlung des
Punktproblems so einfach wäre.

Approximately spherically symmetric masses are ubiquitous in our universe: think of planets, stars, and
black holes. It is thus a reasonable first step, after setting up the Einstein field equations, to ask what
the metric induced by spherically symmetric bodies looks like (in vacuum, outside of the mass itself ),
and which modifications of the dynamics of test particles moving in such gravitational fields general
relativity predicts. In this section, we discuss this scenario in detail.

Here we consider only spherically symmetric mass distributions that are non-rotating and uncharged.
In particular the first assumption is often not satisfied by objects in space (celestial bodies typically
rotate); taking into account the angular momentum of masses leads to a (more complicated) cousin of the
Schwarzschild metric, the so called ↑ Kerr metric (which we will not discuss here due to its complexity).
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13.1.1. Spherically symmetric spacetimes

1 | Recall: Minkowski metric in spherical coordinates:

ds2 D c2dt2 � .dr2 C r2d�2/„ ƒ‚ …
dEx2

with d�2 WD d�2 C sin2 � d'2 (13.1)

^ Most general spherically symmetric metric (= invariant under spatial rotations Ex0 D REx):

ds2 D A.r; t/ dt2 � B.r; t/ dr2 C 2C.r; t/ dtdr � D.r; t/„ƒ‚…
D r2 (wlog)

d�2 (13.2)

A;B;C;D: Undetermined functions

• Ametric that is spherically symmetric should allow for coordinates that reflect this symmetry.
This means that the metric “looks the same” in all directions, i.e., no coefficient g�� can
depend on � or ' (above A, B, C , D). Furthermore, the metric should not contain any
off-diagonals that mix angles d� and d' with either time dt or the radial part dr . For fixed
time t and radius r , a spherically symmetric metric must describe, well, a sphere, so that the
only allowed length element is d�2, possibly scaled by a constant.

These statement are sloppy. What we really want is a metric that has three (linearly indepen-
dent) space-like ← Killing vector fields that satisfy the Lie algebra so.3/ (the algebra of angular
momentum operators in quantum mechanics) – and therefore represent spatial rotations;
such spacetimes are called ↑ spherically symmetric because their isometries (generated by
Killing vectors) include the rotation group SO.3/. One can then show that for such spheri-
cally symmetric spacetimes there exist coordinates in which the metric has the form (13.2).
This is similar to Section 11.5 were we studied how the existence of a time-like Killing vector
restricts the components of the metric in appropriately chosen coordinates.

• Note that we do not assume that the metric is ← stationary or even ← static, nor do we restrict
its asymptotic behavior.

• That one can always choose coordinates whereD.r; t/ D r2 is easy to see: Simply define new
coordinates Nr WD

p
D.r; t/ and Nt WD t , and use the transformation d Nr D @r

p
D.r; t/ dr C

@t
p
D.r; t/ dt and dNt D dt to rewrite ds2. This modifies the prefactors A ! NA, B ! NB

andC ! NC , but does not introduce additional terms beyond dNt2, d Nr2 and dNtd Nr in the metric.
Finally, rename Nr 7! r , Nt 7! t , NA 7! A etc.

2 | Define new time coordinate Nt D Nt .t; r/ and a suitable function ! D !.t; r/ such that

dNt D !.Adt C Cdr/ (13.3)

That this is always possible is straightforward to see: First, note that the expression Adt C Cdr
is not necessarily an ↑ exact differential form, i.e., it is not guaranteed for Nt .t; r/ to exist. This is
why we need the additional function !.t; r/. On a suitable domain (it must be ↑ contractible), the
↑ Poincaré lemma tells us that every ↑ closed form is exact. This means that if we can choose !.t; r/
such that !.Adt C Cdr/ becomes closed, we know that Nt .t; r/ exists such that Eq. (13.3) holds.

A differential form is closed if its exterior derivative vanishes:

0
Š
D dŒ!.Adt C Cdr/� D Œ@r .!A/ � @t .!C/� dr ^ dt : (13.4)

This condition is equivalent to a first-order partial differential equation for !,

@r .!A/ D @t .!C/ , .@r!/AC .@rA/! D @t .!/C C @t .C /! ; (13.5)
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for which you need to find only one non-zero solution !, given the functions A and C . Such a
solution is called ↑ integrating factor.

Eq. (13.2)
Eq. (13.3)
�����!

Adt2 C 2Cdtdr $
dNt2

A!2
�
C 2dr2

A
(13.6)

This trick eliminates the mixed term dtdr (we drop again all bars and rename prefactors):

ds2 D A.r; t/ dt2 � B.r; t/ dr2 � r2 d�2 (13.7)

3 | Lorentz signature of ds2! A > 0 and B > 0! Define A � e�c2 and B � e�!

Here � D �.r; t/ and � D �.r; t/ are undetermined functions:

ds2 D e� d.ct/2 � e� dr2 � r2
�
d�2 C sin2 � d'2

�
� g��dx�dx� (13.8)

Note that our coordinates are .x0; x1; x2; x3/ D .ct; r; �; '/.

In these coordinates the only non-zero components of the metric tensor are:

g�� D

0B@g00 g11
g22

g33

1CA
��

D

0BB@
e�

�e�

�r2

�r2 sin2 �

1CCA
��

(13.9)

4 | Our final goal is to solve the Einstein field equations for a point mass using the rotation symmetric
ansatz Eq. (13.8). To this end, we need the curvature tensor, and therefore the…

Christoffel symbols:

A straightforward but tedious calculation yields the non-zero components:

Eq. (13.9)
Eq. (10.79)
������!

�000 D
P�

2
; �001 D

�0

2
; �011 D

P�

2
e��� (13.10a)

�100 D
�0

2
e���; �101 D

P�

2
; �111 D

�0

2
(13.10b)

�122 D �re
��; �133 D �re

�� sin2 �

�212 D
1

r
; �233 D � sin � cos � (13.10c)

�313 D
1

r
; �323 D cot � (13.10d)

with abbreviations P� � @�
@.ct/

D
@�
@x0 and �0 �

@�
@r
D

@�
@x1 .

We extend this convention to higher derivatives in the obvious way.

All not listed components either vanish or are given by the symmetry of the Christoffel symbols.
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5 | Einstein field equations:

Another straightforward (but even more tedious) calculation yields the non-zero components of
the Einstein tensor. With these, the Einstein field equation reads:

G 0
0 D e

��
�
1
r2 �

�0

r

�
�

1
r2 D ��T 0

0 (13.11a)

G 1
0 D e

�� P�
r

D ��T 1
0 (13.11b)

G 1
1 D e

��
�
1
r2 C

�0

r

�
�

1
r2 D ��T 1

1 (13.11c)

G 2
2 D

8<:
1
2
e��

�
�00
C

�02

2
C

�0��0

r
�
�0�0

2

�
�
1
4
e��

�
2 R�C P�2 � P� P�

�
9=; D ��T 2

2 (13.11d)

G 3
3 D G

2
2 D ��T 3

3 (13.11e)

All other components of the Einstein tensor vanish.

Our rotation symmetric ansatz Eq. (13.9) for the metric of course imposes restrictions on the form
of the energy-momentum tensor for which solutions exists. Note that the Einstein tensor contains
second-order derivatives for it derives from the curvature tensor.

13.1.2. Birkhoff’s theorem

6 | ^ Spherically symmetric solutions in vacuum: T�� D 0

This means that we are interested in the metric outside of spherically symmetric bodies (like planets
and stars). As this is exactly were we would like to test general relativity (e.g., by following
test particles on their geodesics), this simplifications is actually well motivated.

7 | ^ First three equations of Eq. (13.11):

Eq. (13.11a) , e��

�
�0

r
�
1

r2

�
C
1

r2
D 0 (13.12a)

Eq. (13.11b) , P� D 0 (13.12b)

Eq. (13.11c) , e��

�
�0

r
C
1

r2

�
�
1

r2
D 0 (13.12c)

Eq. (13.12b)! � D �.r/
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8 | Eq. (13.12a) + Eq. (13.12c)!

�0.r/C �0.r; t/ D 0 , �0.t; r/ D ��0.r/ (13.13)

Integration yields the form

�.t; r/ D �.r/C f .t/ : (13.14)

The fact that �.r/ relates to �.r/ is not important right now. The crucial point is that the space
and time dependency of �.t; r/ separated into two summands:

^ Coordinate transformation Nt D Nt .t/ with dNt D ef=2dt :

e�.t;r/d.ct/2 13.14
D e�.r/ef .t/d.ct/2 D e�.r/ d.c Nt /2 (13.15)

That such a coordinate transformation always exists is easy to see: The integral Nt .t/ WD
R t
t0
ef .s/=2ds

does the job by construction.

Eq. (13.8)
Nt 7! t
���!Most general spherically symmetric solution in vacuum:

ds2 D e�.r/ d.ct/2 � e�.r/ dr2 � r2 d�2 (13.16)

Our new insight is that � D �.r/ and � D �.r/ do not depend on the time coordinate:

!Metric is ← static.

9 | Eq. (13.13) is still valid: [combine Eqs. (13.13) and (13.14)]

�0.r/C �0.r/ D 0 ) �.r/C �.r/ D 0 (13.17)

There is of course also an integration constant. But this constant can be absorbed in the term
e�.r/d.ct/2 by another coordinate transformation (rescaling) of the time coordinate.

10 | Let us once again go back to the Einstein field equations:

Eq. (13.12a) , e��.r/
�
1 � �0r

�
D 1 (13.18)

Use substitution ˛.r/ WD e��.r/!

˛ C ˛0r D 1 (13.19)

! Solution:

˛ D 1C
a

r
D e�� 13.17

D e� with integration constant a. (13.20)

^ Spatial infinity r !1: [Use lim
r!1

e� D 1 D lim
r!1

e� .]

lim
r!1

ds2 13.16
D d.ct/2 � dr2 � r2 d�2 D hMinkowski spacei (13.21)

!Metric is asymptotically flat.

11 | Check that…

• Eqs. (13.11a) and (13.17)! Eq. (13.11c) solved 3

• Eq. (13.20)
ı
�! Eqs. (13.11d) and (13.11e) solved 3
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12 | ⁂ Birkhoff’s theorem:

We can summarize our results as follows:

Every spherically symmetric solution of the Einstein field equations

in vacuum is static and asymptotically flat.

• The theorem was proven by American mathematician George David Birkhoff in
1923 [204]. However, the same result was obtained already in 1921 by Norwegian physicist
JørgTofte Jebsen [205]. Birkhoff’s theorem is therefore a typical example for↑Stigler’s
law [206] according to which no scientific discovery is named after its original discoverer.

• If you think about it, this result is quite surprising as we didn’t exploit any properties of
the energy-momentum tensor that produces the gravitational field except for its spherical
symmetry. This means that our result holds also for time-dependent distributions of mass/en-
ergy – as long as the time dependence does not break the spherical symmetry. For example,
consider a pulsating (non-rotating) star:

Birkhoff’s theorem demands that the metric outside of this star is nonetheless static and
asymptotically flat. This implies in particular that such a time-dependent object cannot emit
gravitational waves!

[A similar situation occurs when a dying star explodes in a supernova: If the explosion is
spherically symmetric, such an event cannot emit gravitational waves.]

13.1.3. The Schwarzschild metric

13 | The derivation above yields the most general solution of the vacuum EFEs that are spherically
symmetric:

Eqs. (13.16) and (13.20)!

ds2 D
�
1C

a

r

�
d.ct/2 �

�
1C

a

r

��1

dr2 � r2 d�2 (13.22)

! The parameter a must be determined by the mass of the object that generates this metric.

14 | ^ Correspondence principle:

In the non-relativistic weak-field limit, we must recover the Newtonian gravitational potential:

1C
a

r

13.22
D g00

11:65
� 1C

2�

c2
D 1 �

2GM=c2

r
with � D �

GM

r
(13.23)

HereM is the mass of the central spherically symmetric body.

! a D �2GM
c2 � �rs with the…

rs D
2GM

c2
⁂ Schwarzschild radius (13.24)
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Thus we finally find the ⁂ Schwarzschild metric

ds2 D
�
1 �

rs

r

�
d.ct/2 �

�
1 �

rs

r

��1

dr2 � r2d�2 (13.25)

expressed in ⁂ Schwarzschild coordinates .ct; r; �; '/ with d�2 D d�2 C sin2 � d'2.

15 | Comments:

• ¡! Do notmake themistake to interpret t and r asmeasurable times and distances, respectively.
These are just coordinates and one must compute coordinate independent proper times and
distances to check if, how, and where they relate to observable quantities (→ below). (Recall
the remarks in Section 9.2 about the role played by coordinates in general relativity.)
Note also that for r < rs the coordinate t is actually space-like whereas r is time-like.

• In Schwarzschild coordinates, the metric Eq. (13.25) has two singularities:

1. On the sphere with r D rs (→ event horizon) the prefactor of dr2 diverges and the
prefactor of dt2 vanishes. You show on → Problemset 6 that this singularity is an
artifact of the Schwarzschild coordinates, and that it can be remedied by choosing better
coordinates (e.g. ↑ Kruskal–Szekeres coordinates). The metric can then be smoothly
extended beyond the horizon without anything fancy happening on the horizon itself.

2. At r D 0 the prefactor of dt2 blows up and the prefactor of dr2 vanishes. In contrast to
the coordinate singularity at r D rs , the singularity at r D 0 of the interior solution is
“physical” in the sense that there coordinate-independent quantities (scalars built from
the curvature tensor) diverge. However, keep in mind that for “normal” bodies like
planets and stars, the Schwarzschild metric is not valid in the interior anyway, so that
this singularity has no physical relevance in these scenarios. Only for black holes this
singularity is relevant as it heralds the breakdown of general relativity.

• Inspection of Eq. (13.25) shows that the ratio rs=r quantifies the deviations fromflatMinkowski
space. Because the Schwarzschild solution Eq. (13.25) is only valid outside of the mass, rela-
tivistic effects become important if one can approach the body to r � rs , i.e., the (coordinate)
radiusR of the body must be of the order of the Schwarzschild radius. Conversely, for bodies
with R � rs it is necessarily r � rs such that the dominant effect of the Schwarzschild
metric is described by Newtonian gravity:

The situation of a → black hole where r < rs is possible will be discussed in Section 13.3; in
the following we assume r � R > rs so that neither the coordinate singularity at r D rs nor
the physical singularity at r D 0 are relevant.
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• ¡! Do not forget that the Schwarzschild solution Eq. (13.25) is only valid in vacuo, i.e., outside
the gravitating mass. The metric in the interior is different from Eq. (13.25) (in particular:
non-singular). This means that if the Schwarzschild radius rs < R is “buried” in the body,
it has no physical significance. There is no event horizon close to the center of Earth!

For the exact solution of the interior of a star see ↑Weinberg [121] (§11.1, pp. 299–304).

• Because of the coordinate singularity at r D rs , the Schwarzschild solution in Eq. (13.25)
actually separates into two independent solutions for the EFEs in vacuum: The extended
outer solution for r > rs (with time-like coordinate t) and the bounded inner solution for
0 < r < rs (with time-like coordinate r). Since the metric is undefined at r D rs , it is a
priori unclear whether (and if, how) these two “patches” can be glued together to form a
single, contiguous spacetime that solves the vacuum EFEs. That (and how) this is possible
can be seen for example in ↑ Kruskal–Szekeres coordinates (→ Problemset 6).

• If one plugs in the numbers, the Schwarzschild radius of a spherical massM is roughly

rs � 3 �

�
M

Mˇ

�
km (13.26)

whereMˇ is the mass of the Sun. One finds for example:

rs [m] rs=R

Erde 9 � 10�3 10�9

Sonne 3 � 103 10�6

White dwarf 3 � 103 3 � 10�4

Neutron star 3 � 103 0:3

This explains why the Newtonian approximation has been so successful in our Solar System.

It is clear that we should compare rs to the coordinate radius R of the spherical body, i.e.,
the radial Schwarzschild coordinate r D R where the surface of the body is located (since
the terms rs=r compare rs to the coordinate r). Remembering our warning above (that
coordinates cannot directly be identified with physical quantities), you might object that
equating R with the measured radius of (e.g.) Earth is not justified. This is indeed a valid
objection; however, → below we will see that the coordinate radius has a straightforward
physical meaning – which justifies the numbers above (although the interpretation is not the
one you might expect).

• According to Birkhoff’s theorem, the Schwarzschild metric is the unique solution of the
vacuum field equations outside of a spherically symmetric, non-rotating, uncharged mass. That
the mass is non-rotating is important, because a finite angular momentum breaks the rotation
symmetry of the problem. That the mass is uncharged is important, because otherwise the
electromagnetic field outside the mass would be non-zero and our assumption T�� D 0would
be invalid.

• One can loosen these restrictions and solve the EFEs for more general scenarios:

Rotating? Charged? Metric Ref. Found

7 7 ← Schwarzschild [202] 1916

7 3 ↑ Reisser-Nordström [207–210] 1916

3 7 ↑ Kerr [211] 1963

3 3 ↑ Kerr-Newman [212, 213] 1965

Because most celestial bodies rotate, these generalizations (in particular the Kerr metric)
are often more useful to describe real phenomena than the Schwarzschild metric (like black
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holes). However, for slowly rotating bodies the Schwarzschild metric often provides good
approximations to explain a variety of phenomena (→ Section 13.2; but not always, → Lense-
Thirring effect in → Problemset 6).

• In his derivation, Schwarzschild used both time-independence and asymptotic flatness as inde-
pendent assumptions [202]. The contribution by Birkhoff and Jebsen was to show that both
assumptions are superfluous [204,205]: That the solution must be static and asymptotically
flat is already implied by its rotational symmetry.

16 | Proper time:

Let us now study how the Schwarzschild coordinates relate to measurable proper time:

i | ^ Ideal clock at rest in Schwarzschild coordinates:

! Proper time:

d� 11.10
D

1

c
ds 13.25
D

r
1 �

rs

r
dt (13.27)

! �� < �t for rs < r <1

ii | ^ Asymptotic observer at r !1:

lim
r!1

d� D dt (13.28)

!We can conclude:

Schwarzschild time t = Proper time of observer at spatial infinity (13.29)

iii | In summary, the clocks of stationary observers at finite distance to the mass run always slower
than the clocks at spatial infinity. The closer the clock to the Schwarzschild radius, the slower
it ticks. We can illustrate this as follows:

• To draw the null cones in a Schwarzschild rt -diagram, note that ds2 Š
D 0 implies

d.ct/
dr
D ˙

�
1 �

rs

r

��1

(13.30)

for constant � and '. So for r ! 1 the cones open with 90ı, as in flat Minkowski
space; for r ! rs the cones close up and become degenerate at the Schwarzschild
radius.
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17 | Proper distance:

How do the Schwarzschild coordinates relate to proper distances?

i | ^ Time slice t D const (dt D 0)

! Spatial metric: [For a formal definition see Eq. (11.30) or Eq. (11.27).]

dl2 D
�
1 �

rs

r

��1

dr2 C r2
�
d�2 C sin2 � d'2

�
(13.31)

ii | ^ Circumference of a great circle C of coordinate radius r (� D �
2
):

LŒC � WD

Z
C

dl„ƒ‚…
Coordinate
independent

D r

Z 2�

0

d'„ ƒ‚ …
Coordinate
dependent

D 2�r (13.32)

Similarly, one finds AŒS � D 4�r2 for the surface of a sphere S with coordinate radius r .

! The coordinate r directly relates to lengths of circles (and areas of spheres).

Note that both LŒC � and AŒS � are geometric (= coordinate independent) quantities.

iii | But what about radial proper distances?

^ Radial segment L from r1 to r2 (� D const and ' D const):

LŒL� WD

Z
L

dl D
Z r2

r1

drq
1 � rs

r

DW �R.r1; r2/ > r2 � r1 (13.33)

Note that we cannot compute distances from the center r D 0 because, first, we would
integrate over the coordinate singularity (and start at the singularity at r D 0), and second,
for r < rs the coordinate becomes time-like and the integral actually measures a time and
not a length! This is why we consider distances between two points with radial coordinates
r2; r1 > rs .

We conclude:

The radial proper distance is larger than the coordinate distance. (13.34)

iv | ^ Two great circles Ci with radii r2 > r1!

ıU

ıR
WD

LŒC2� � LŒC1�

�R.r1; r2/
D
2�.r2 � r1/

�R.r1; r2/

13:33
<

2�.r2 � r1/

r2 � r1
D 2� (13.35)

This means that the circumference varies “less than usual”: ıU < 2�ıR.

Compare this to Euclidean geometry:

ıU

ıR
WD

2�r2 � 2�r1

r2 � r1
D 2� ) ıU D 2�ıR (13.36)

Note that the ratio defined in Eq. (13.35) makes use of geometric properties of the space(time)
only; i.e., both LŒCi � and�d are (in principle) measurable quantities that do not depend on
coordinates.
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! Space is non-Euclidean!
The fact that this ratio is smaller than 2� tells us that the spatial curvature is positive. For
example, a two-dimensional sphere has positive curvature and the same feature:

(This is an extreme example where the ratio is zero.)

v | Let us approximate the measure Eq. (13.35) and apply it to the Solar System to get a feeling
for how non-Euclidean space actually is in our neighborhood:

We assume rs � r and r2� r1 � rs (which is satisfied for all situations in the Solar System).

Eq. (13.33)!

�R.r1; r2/ �

Z r2

r1

dr
�
1C

1

2

rs

r

�
D r2 � r1 C

rs

2
ln
r2

r1
(13.37)

With this and Eq. (13.35) we find:

2�.r2 � r1/

�R.r1; r2/

ı
� 2�

h
1 �

1

2

�
rs

r2 � r1

�
ln
r2

r1„ ƒ‚ …
Non-Euclid. correction �

i
: (13.38)

For example, let r1 D 7 � 108m be the radius of the Sun and r2 D 5:8 � 1010m the
semi-major axis of Mercury. With the Schwarzschild radius rs D 3� 103m (of the Sun) one
finds the non-Euclidean correction � � 10�7.

! The deviations from Euclidean geometry in the Solar System are miniscule.

This explains why the Euclidean space used in Newtonian mechanics is such a good approxi-
mation to describe the Solar System!

18 | Alternative coordinates:

There is a zoo of different coordinate systems adapted to the Schwarzschild metric, all with distinct
advantages and disadvantages. Here we introduce one alternative coordinate system to demonstrate
that the singularity at r D rs is an artifact of Schwarzschild coordinates:

For a motivation of the widely used ↑ Kruskal–Szekeres coordinates: → Problemset 6.

i | ^ Coordinate transformation Nr D Nr.r/ with

r �
�
1C

rs

4 Nr

�2
Nr (13.39)

and r � rs , Nr � rs=4.

Eq. (13.25)
ı
�!

ds2 D
�
1 � rs

4 Nr

1C rs

4 Nr

�2
d.ct/2 �

�
1C

rs

4 Nr

�4 �
d Nr2 C Nr2d�2

�„ ƒ‚ …
� d Nx2Cd Ny2Cd Ń2

(13.40)
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with ⁂ isotropic coordinates .c Nt ; Nx; Ny; Ń/ or .c Nt ; Nr; �; '/.

Note that the Nr-dependent scaling now affects all spatial coordinates equally; hence isotropic
coordinates [cf. Eq. (13.25)].

ii | Important: No divergence/singularity for Nr ! rs=4 in Eq. (13.40) !

Although the divergence (singularity) at the event horizon is gone, the metric is still degenerate
at Nr D rs=4 since the component Ng00 D 0 vanishes [← Eq. (3.46)]. The ↑ Kruskal–Szekeres
coordinates you study in → Problemset 6 do not have this problem and are non-degenerate
and non-singular on the event horizon.

iii | ^ Weak field limit Nr � rs
ı
�! (expand linearly in rs

Nr
)

ds2 �
�
1 �

rs

Nr

�
d.ct/2 �

�
1C

rs

Nr

� �
d Nr2 C Nr2d�2

�
(13.41)

19 | Cosmological constant:

Retracing the solution in Section 13.1.2 – but now including the cosmological constant in the EFEs
– yields the ⁂ Schwarzschild de Sitter metric

ds2 D
�
1 �

rs

r
�
ƒr2

3

�
d.ct/2 �

�
1 �

rs

r
�
ƒr2

3

��1

dr2 � r2d�2 : (13.42)

[↑ de Sitter space is the maximally symmetric (= 10 Killing vectors) spacetime with constant positive
scalar curvature (R > 0); you can think of it as the generalization of spheres in Euclidean space. De
Sitter space is the maximally symmetric vacuum solution of the EFEs with positive cosmological
constant – analog to Minkowski space for the case of vanishing cosmological constant.]

Due to the additional terms in Eq. (13.42), the asymptotic metric for r ! 1 is no longer flat
Minkowski space but positively curved de Sitter space. In the non-relativistic limit, the gravitational
potential can be identified via Eq. (11.65) as

� D �
GM

r
�
c2ƒ

6
r2 : (13.43)

This is a modification of Newtonian gravity and consistent with our previous result Eq. (12.42).
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