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↓ Lecture 25 [18.06.24]

12. The Einstein Field Equations

We are only one step away from completing the theoretical framework of general relativity.

In the previous Chapter 11 we studied how matter fields are affected by the metric of spacetime. What
we are missing is the converse: How is the metric of spacetime determined in the first place? This is the
question we will answer in this chapter, and it will lead us to the most important result of this course: The
Einstein field equations.

12.1. Derivation of the Einstein field equations

In the following, we make the following general (and rather weak) assumptions:

§ Assumptions 2

3P1 Spacetime is a 3C 1-dimensional Lorentzian manifold.

MTR There exists a dynamical metric field g.

FLD All other degrees of freedom (“matter”) are described by fields �.

Note that we write � as placeholder for a family of (not necessarily scalar) fields.

VAR The classical dynamics of all fields can be described by a variational principle.

LOC All actions are given by integrals over local Lagrangians.

COV All theories are generally covariant ( GR ).

Follow the arguments below carefully; each step is quite simple, so that the derivation borders on magic:

1 | The action of Everything:

MTR + FLD + VAR ! ^ “Action of Everything”:

SŒg; �� D SŒg�„ƒ‚…
Only metric

C Sg Œ��„ƒ‚…
Rest

(12.1)

Without loss of generality, we can divide the action into a purely metric part and a “rest”, all terms
of which contain at least one matter field.

Combining general relativity with the Standard Model of particle physics tells us what
this action actually looks like (at least in the infrared limit), recall the ← Core Theory mentioned in
Section 0.4. These details are not relevant for what follows, though.

2 | Equations of motion of Everything:
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As usual, the physical solutions extremize the action (variational principle):

VAR ! ıSŒg; ��
Š
D 0 ,

8<: ıgSŒg; �� D ıgSŒg�C ıgSg Œ��
Š
D 0

ı�SŒg; �� D ı�Sg Œ��
Š
D 0

(12.2)

To extremize the action, both equations on the right must be satisfied simultaneously:

• EOMs for matter fields:

ı�Sg Œ��
Š
D 0 (12.3)

These equations describe the dynamics of matter fields on a given“background”metric g.

! Already kown & understood! (← Chapter 11)

An example is the Maxwell action (11.78), the variation of which leads to the Maxwell
Eq. (11.79).

• EOMs for metric field:

ıgSŒg�
Š
D �ıgSg Œ�� (12.4)

These equations describe the dynamics of the metric and its interaction with matter.

! New! What can we say about this equation of motion?

3 | LOC !

Because of locality, we can write both parts of the action as integrals of Lagrangian(densities):

SŒg� D

Z
d4x
p
gLMetric.g; @g/ (12.5a)

Sg Œ�� D

Z
d4x
p
gLMatter.�; @�; g; @g/ (12.5b)

These expressions actually require an additional prefactor 1
c
for dimensional reasons because we

measure time coordinates in units of length (x0 D ct); we omit these prefactors because they are
irrelevant in the following and drop out in the next step anyway.

Eq. (12.4) is then equivalent to!Z
d4x
p
g„ ƒ‚ …

Scalar

2
p
g

ı.
p
gLMetric/

ıg��„ ƒ‚ …
DW ���(unknown)

ıg��„ƒ‚…
Variation

Š
D �

Z
d4x
p
g„ ƒ‚ …

Scalar

2
p
g

ı.
p
gLMatter/

ıg��„ ƒ‚ …
11.106
D T��

ıg��„ƒ‚…
Variation

(12.6)

Here we used the variational derivative Eq. (11.100), multiplied the equation by 2 and inserted
p
g

to identify the Hilbert energy-momentum tensor Eq. (11.106) on the right-hand side.

Eq. (12.6) valid for all variations ıg��.x/!

ıgSŒg; ��
Š
D 0 , ���

Š
D �T�� (12.7)

4 | What do we know about ���?

• ��� depends on metric g and its derivatives @g, @2g,…

Note that ��� does not contain matter fields � by construction.
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• COV !��� is .0; 2/-tensor

This follows from the definition in Eq. (12.6) with the same arguments as for T�� in Sec-
tion 11.4.

• ��� is symmetric

This follows from the definition in Eq. (12.6) with the same arguments as for T�� in Sec-
tion 11.4.

• COV !��� is identically divergence-free: ���
I� � 0

An often heard argument for this condition is the following: Since T�� satisfies T
��

I�
:
D 0

[recall Eq. (11.109)], Eq. (12.7) implies that ���
I� D 0. This argument is sloppy at best

because of the little dot over the equal sign in T ��I�
:
D 0; recall that this indicates that the

equation is only true for special matter fields, namely those that satisfy the equation of motion
Eq. (12.3). Thus, from this line of argument, one can only conclude that ���

I�
:
D 0, i.e.,

��� is divergence-free for solutions .g; �/ of the equations of motion.

But our claim – which is crucial for the next step – is much stronger: ���
I� � 0 is an

identity (that’s why we use� and notD), i.e., it is valid for arbitrary metric fields. That this
must be true follows from our derivation in Section 11.4: Note that, because of Eq. (12.6),
��� plays formally (not physically, → later) the role of T�� for a purely gravitational theory
SŒg� D Sg Œ�� without matter fields. One can then retrace our derivation in Section 11.4
with the simplification that ı�Sg Œ�� � 0 is trivially satisfied (because there are no fields
�). Instead of ���

I�
:
D 0, one finds the identity ���

I� � 0. This unconditional identity
is therefore a consequence of the general covariance (= diffeomorphism invariance) of the
gravitational action SŒg� and the fact that it does not depend on any other fields. ���

I� � 0

is an example of a so called ↑ Noether identity that follows, via Noether’s second theorem,
from a group of local (gauge) symmetries (here: diffeomorphisms) [149].

These are all necessary properties of ���; no discussions!

5 | We now make one (and the only) simplifying assumption, namely:

§ Assumptions 3

2ND The tensor ��� depends on g, @g, @2g (but not on higher-order derivatives).

• This is the only simplicity assumption we use in our derivation. If you drop it, you can
construct (more complicated) modifications of general relativity (→ later).

• Can you think of any equation of motion (classical or quantum, doesn’t matter) that con-
tains third- or even higher-order derivatives? No? Nothing? So our assumption isn’t that
outlandish after all…

6 | Lovelock’s theorem:

We already know two tensors that satisfy all these properties:

Metric g�� : g
��

I�
10.74
D 0 (Metric-compatibility) (12.8a)

Einstein tensor G�� : G
��

I�
10.122
D 0 (Bianchi identity) (12.8b)

Recall that the Einstein tensor depends linearly on the curvature tensor which, in turn, depends on
second (and first) derivatives of the metric.
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3P1 + 2ND
↑ Lovelock’s theorem
�����������! This list is exhaustive!

Lovelock’s theorem states that, inD D 4 spacetime dimensions, the only divergence-free rank-2
tensors that can be constructed from the metric and its first and second derivatives are the Einstein
tensorG�� and the metric g�� itself (for details see notes → below).

• Since Lovelock’s theorem is just a mathematical fact with a technical proof [134, 135], we
take it at face value. Note that this does not open a conceptual gap in our derivation. We do
not push any assumptions under the rug! See alsoMisner et al. [2] (§17.1, pp. 407–408).

• Consider rank-2 tensors Aij that are…

(a) … functions of the metric and its first two derivatives: Aij D Aij .g; @g; @2g/.

(b) … divergence-free: Aij
Ij D 0.

(c) … symmetric: Aij D Aj i .

(d) … linear in @2g.

The statement of Lovelock’s theorem is the following:

The only tensors with the properties (a)-(d) areGij and gij .

(This result is actually not due to Lovelock butCartan,Weyl and Vermeil, see
references in [135].)

Note that this statement is independent of the spacetime dimensionD!

However, if one presumes that spacetime is D D 4-dimensional (which we did anyway
starting from Chapter 11), Lovelock showed [135] that the assumptions of symmetry (c)
and linearity in the second derivative (d) are superfluous and can be dropped!

Thus we are left with the only non-trivial assumption that the EOM of the metric field does not
contain higher than second derivatives of the metric.

!Most general form of Eq. (12.7):

��� D ˛G�� C ˇg��
Š
D �T�� (12.9)

Note all conditions above are preserved by linear combinations.

7 | ⁂ Einstein field equations (EFE):

Let us reshuffle and rename the unkown constants ˛ and ˇ a bit:

G��‚ …„ ƒ
R�� �

1

2
Rg�� Cƒg��„ ƒ‚ …

“Geometry”

D � �T��„ƒ‚…
“Matter”

(12.10)

Two unknown parameters:

• ⁂ Einstein gravitational constant �

• ⁂ Cosmological constant ƒ

We will discuss these two parameters → below.

Notes:
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• The minus on the right-hand side of Eq. (12.10) depends on the convention; here we follow
Schröder [3] (who follows the original convention by Einstein). There is a plethora of
sign conventions in the literature, in some of which the minus in Eq. (12.10) is not present
[↑ Misner et al. [2] (first page)].

• If one removes the inconsistency of the linearized tensor gravity discussed in Section 8.2
(cf. Eq. (8.10), see also → Problemset 1), one inevitably ends up with the Einstein field
Eq. (12.10) [101]. Recall that we identified the linearity of Eq. (8.10) as the root cause for
its inconsistency; in Section 8.2 we then argued on very general grounds that a relativistic
theory of gravity must be non-linear in the gravitational field. Eq. (12.10) satisfies this: the
Einstein tensor is non-linear in the metric (and its derivatives).

!

The superposition principle is not valid for the EFE!

This makes solving the EFE extremely hard in general.

• The above derivation of the EFEs used surprisingly few (and simple) assumptions. This
makes the EFEs very“generic,” and one shouldn’t be surprised that there are many different
routes to derive them. An overview over alternative derivations (or axiomatizations) of the
Einstein field equations can be found inMisner et al. [2] (pp. 417–428).

• The EFEs are the Euler-Lagrange equations that come from the variation of an action
(which we don’t know yet); i.e., we formulate general relativity in the ↓ Lagrangian
formalism. There is also a ↓ Hamiltonian formulation of general relativity, the so
called ↑ ADM formalism [150], which plays an important role as a starting point for some
theories of quantum gravity.

• The Einstein field equations are both very simple and very complicated:

They are simple in the sense that their derivation doesn’t need much physical input; as we
have seen above, under very general assumptions (like general covariance), the EFEs are
inevitable. In that sense, general relativity is a very “cheap” theory (we don’t have
to “pay” with a lot of assumptions about reality).

On the other hand, because of their non-linearity, the EFEs are mathematically extremely
complicated and hard to solve (→ below). This sounds bad, but is actually their greatest
strength: because of their complexity, they predict and describe a plethora of non-trivial,
unanticipated phenomena [black holes, gravitational waves, gravitational lenses, an expanding
universe,…; all of this is hidden in the innocuous-looking Eq. (12.10)].

Good physical theories have a high“compression ratio” of input vs. output: they describe
a variety of phenomena with little input. This makes the EFEs (and thereby general
relativity) one of the most successful physical theories of all time.

It is almost too good, at least as a starting point for a “theory of everything” (presumably a
theory of quantum gravity). To find such a theory, we need input: features and phenomena
of reality that we can use as starting points for an “inductive bootstrap” towards a more
fundamental theory. The problem is that general relativity tells us that a big chunk
of the crazy stuff happening in our world (black holes etc.) can be traced back to Eq. (12.10),
which, as we have seen, is implied by rather generic assumptions about reality. Thus, while
every viable theory of quantum gravity must necessarily lead to Eq. (12.10) in a classical
regime, this might not be such a distinguishing feature as one might hope. Put differently: it
might turn out to be hard to write down reasonable theories of quantum gravity that do not
lead to Eq. (12.10).
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• Some historical notes:

– A precursor to general relativity was developed by Einstein and his friend and
colleague Marcel Grossmann (a mathematician who introduced Einstein to differential
geometry) already in 1913, the so called“Entwurftheorie” [122]; it contained essentially
all parts needed to formulate general relativity, but not yet the correct field
Eq. (12.10).

– Einstein developed general relativity, culminating the EFEs Eq. (12.10), in a
sequence of papers between October and November 1915 in the“Sitzungsberichte der
Preussischen Akademie der Wissenschaften zu Berlin”:

* On 4. November 1915, Einstein publishes “Zur allgemeinen Relativitätstheorie”
[11] (extended by an addendum), where he proposed the (not yet quite correct)
field equations R�� D ��T�� . That is, he still missed the term �1

2
g��R that

convertsR�� into the Einstein tensorG�� (which satisfies the necessary condition
G
��

I� � 0). (Beware: Einstein denoted the Ricci tensor byG�� ,/.)

* On 25. November 1915, Einstein published in“Die Feldgleichungen der Gravita-
tion” [12] finally the correct field equations (without cosmological constant).

(Beware: Einstein’s notation differs from the modern notation, so be careful when
comparing Ref. [12] with Eq. (12.10); → Problemset 4.)

* On 8. Februar 1917, Einstein introduces the cosmological termƒg�� in“Kosmolo-
gische Betrachtungen zur allgemeinen Relativitätstheorie” [14] [Eq. (13a) on p. 151].

– The Germanmathematician David Hilbert arrived at the Einstein field equations almost
at the same time as Einstein (↑ p. 8 in Ref. [151]). Hilbert introduced the HEMT
Eq. (11.106) and obtained Eq. (12.10) (without cosmological constant) directly via the
variation of an action (the → Einstein-Hilbert action), derived from a Lagrangian (which
Hilbert called“Weltfunktion”, essentially our “Action of Everything”).

– Afirst comprehensive account ofgeneral relativity, summarizing all his previous
results that had appeared in many different papers, was provided by Einstein in“Die
Grundlage der allgemeinen Relativitätstheorie” in 1916 [20].

– Details on the historical genesis of the Einstein field equations can be found in Ref. [152].

8 | Trace-inverted form:

Let T WD T �� be the trace of the energy-momentum tensor
ı
�!

Eq. (12.10) , R�� D ��

�
T�� �

1

2
g��T

�
Cƒg�� (12.11)

This is the (completely equivalent) trace-inverted form of the Einstein field equations.

Proof. Taking the trace on both sides of Eq. (12.10) yields

R�� �
1

2
Rı�� Cƒı

�
� D ��T

�
� , R D �T C 4ƒ (12.12)

where we used ı�� D 4. We can now apply Eq. (12.12) to replaceR in Eq. (12.10),

R�� �
1

2
.�T C 4ƒ/g�� Cƒg�� D ��T�� ; (12.13)

which can be reshuffled to Eq. (12.11). �
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9 | Vacuum field equations:

The cosmological constant has the interpretation of a vacuum energy (→ below). If we assume this
contribution to be absent, “vacuum”means“no energy & momentum”:

Eq. (12.11)
ƒD0; T��D0
���������! R�� D 0 (12.14)

! Vacuum solutions = ⁂ Ricci-flat spacetime manifolds

• ¡! Note thatR���� D 0 impliesR�� D 0 but not the other way around!
Ricci-flat spacetimes are therefore not necessarily flat (= Minkowskian).

• Note thatR�� D 0 is equivalent toG�� D 0.

• Simplest solution: Minkowski space g�� D ���

There are also more complicated, non-trivial solutions; e.g., the → Schwarzschild solution,
which describes the exterior geometry of a spherically symmetric mass, or gravitational wave
solutions (note that these waves propagate through vacuum: T�� D 0).

• Eq. (12.14) looks simple, right? Well, not so much:

0
Š
D R�� (12.15a)
10.105
10.106
10.114
D

1
2
g��

�
g��;�;� C g��;�;� � g��;�;� � g��;�;�

�
Cg��

�
�����

�

��
� �����

�

��

� (12.15b)

10.79
D

1
2
g��

�
g��;�;� C g��;�;� � g��;�;� � g��;�;�

�
C

1
4
g��g��

�
g��;� C g��;� � g��;�

� �
g��;� C g��;� � g��;�

�
�
1
4
g��g��

�
g��;� C g��;� � g��;�

� �
g��;� C g��;� � g��;�

�
(12.15c)

D
1
2
g��

�
g��;�;� C g��;�;� � g��;�;� � g��;�;�

�

C
1
4
g��g��

2666666664

g��;�g��;� C g��;�g��;� � g��;�g��;�

Cg��;�g��;� C g��;�g��;� � g��;�g��;�

�g��;�g��;� � g��;�g��;� C g��;�g��;�

�g��;�g��;� � g��;�g��;� C g��;�g��;�

�g��;�g��;� � g��;�g��;� C g��;�g��;�

Cg��;�g��;� C g��;�g��;� � g��;�g��;�

3777777775

(12.15d)

Happy solving! ,/!

Even the vacuum EFEs are extremely complicated and only a few exact solutions are known.

• If one allows for a finite cosmological constantƒ ¤ 0, and considers an otherwise empty
universe (T�� D 0), one finds the more general vacuum EFE

R�� D ƒg�� : (12.16)

Solutions of this equation are called ⁂ Einstein manifolds.

Note that flat Minkowski space does not solve this equation for ƒ ¤ 0; since interstellar
space (= vacuum) is very close to flat Minkowski space (special relativity is valid to
good approximation), this already tells us that the cosmological constant, if nonzero, cannot
be very large in our universe. This is why the cosmological constantƒ is often set to zero for
non-cosmological calculations (e.g., for tests in the solar system).
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10 | Properties:

• How many independent EFEs are there?

The Einstein field Eq. (12.10) in vacuum (without cosmological constant)

G�� D 0 (12.17)

is a set of second-order partial differential equations (PDEs) that determine the evolution of
the metric tensor field g��.x/. Thus, for a three-dimensional spatial slice at time coordinate
x0�, you can provide initial data g� � g��.x

0
�; Ex/ and Pg� � g��;0.x

0
�; Ex/, and the EFE

should provide you with a solution g��.x/ defined on the full spacetime (ignoring issues with
singularities). SinceG�� is symmetric, the EFEs correspond to 10 PDEs, which matches the
10 independent components of the metric g�� (which is also symmetric).

There is a catch, though: The four Bianchi identities G��I� � 0 (� D 0; � � � ; 3) tell us that
not all of these 10 PDEs are independent. Due to these constraints, we actually loose four
of the 10 equations, which makes the EFEs underconstrained. That is, we should expect
that solutions g�� of the EFEs retain four unconstrained degrees of freedom that can be
changed arbitrarily. This reflects of course our freedom to change coordinates! Viewed
as an active transformation, this freedom corresponds to the diffeomorphism invariance
of the Einstein-Hilbert action, which must be interpreted as a gauge symmetry (with four
generators): different solutions g�� and Qg�� that are related by a coordinate transformation /
diffeomorphism describe the same physics! The Bianchi identitiesG��I� � 0 can then be
interpreted as ↑ Noether identities, following from Noether’s second theorem.

• Degrees of freedom:

So how many physical degrees of freedom do the EFEs then actually describe? Subtracting
the 4 gauge DOF from the 10 DOF of the metric yields 6 DOF; but, as we will later see in our
discussion of → gravitational waves, this cannot be the end of the story because gravitational
waves have only two polarizations and not 6 (just like photons)! What is going on?

To solve this puzzle, we must first recognize that all dynamical degrees of freedom of a
deterministic theory, described by a second-order PDE, are encoded in the initial data .g�; Pg�/.
Since the EFEs describe a gauge theory, they are only deterministic if we throw all gauge-
equivalent solutions into a common“gauge equivalence class”; thus let Œg�; Pg�� denote the
class of field configurations on the spatial slice at x0� that are equivalent modulo coordinate
transformations (diffeomorphisms). The physical degrees of freedom are then the DOF that
parametrize these gauge classes; and – according to our argument above – there should be 6
such degrees of freedom (in configuration space, not in phase space).

The problem is that not all initial field configurations Œg�; Pg�� are allowed (= yield solutions)
because the initial data must satisfy four constraint equations:

G�0 D f .g; Pg; @ig; @
2
i g/

Š
D 0 for � D 0; : : : ; 3 : (12.18)

These equations are just part of the EFEs Eq. (12.17); the point is that theG0� are functions
of only first time derivatives of the metric. Hence they are not evolution equations at all –
they are constraint equations that must be satisfied by the initial data Œg�; Pg��. Put differently:
You cannot hand in an arbitrary initial configuration Œg�; Pg�� and expect the EFEs to spit out
a solution. Only the special subclass of initial configurations that satisfy Eq. (12.18) yield
solutions. As Eq. (12.18) provides four constraints, this cuts down the physical DOF by
another 4. So in summary there are only 10 � 4 � 4 D 2 physical DOF described by the
EFEs per point of space, which matches the two polarizations of gravitational waves.

How to see that Eq. (12.18) is correct? We want to avoid an expansion of the Einstein tensor
in terms of the metric (because it is ugly). To this end, expand the Bianchi identity:

G��I�
10.57a
D G

�0
;0 CG

�i
;i C : : : � 0 (12.19)
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where the : : : part does not contain derivatives of G. So we have

G
�0
;0 � �G

�i
;i � : : : : (12.20)

But the right-hand side contains at most second time derivatives of the metric. Since this
is an identity,G�0 can only contain at most first time derivatives of the metric. This is the
statement of Eq. (12.18).

• Quite surprisingly, the equations of motion for the matter fields Eq. (12.3) are already con-

tained in the integrability constraint T ��I�
Š
D 0 that follows from the identity G��I� � 0

(↑ Ref. [153]). Put differently:

The Einstein field Eq. (12.10) are not only the differential equations that determine the geometry
of spacetime in response to the energy and momentum of the matter fields, but, at the same time,
determine the evolution of the matter fields themselves!

This is possible because the EFEs are non-linear [153].

To understand how strange this is, recall our theory in Section 6.4 that described the joint
evolution of an electromagnetic field coupled to charged, massive particles. There we derived
two equations of motion: the“matter EOM”Eq. (6.130) describes the motion of particles
in response to the EM field, and the “field EOM” Eq. (6.125) describes the evolution of
the EM field in response to the current produced by the charged particles. To describe the
evolution of the full system, one needs both EOMs – one cannot derive the Lorentz force
law Eq. (6.132) from the inhomogeneous Maxwell Eq. (6.125) (at least not without assuming
conservation of total energy and momentum).

Naïvely, the Einstein field Eq. (12.10) parallel the inhomogeneous Maxwell Eq. (6.125) in
that they describe the response of a field (the metric) to a source (energy &momentum). The
difference is that the EFEs are so restrictive (due to their non-linearity), that they already
contain (local) conservation of energy and momentum, and thereby the matter EOMs! Thus,
in general relativity, the geometry of spacetime and the evolution of matter are so
tightly interwoven, that one can only solve them together (which makes solving the EFEs in
general extremely hard, if not impossible).

As an example, consider ↑ Einstein-Maxwell theory that describes a universe filled with
Maxwell’s EM field but nothing else (no charges). The source of the gravitational field is
then given by the HEMT Eq. (11.115) of Maxwell theory,

T�� D
1

4�

�
F��F

�
� C

1

4
g��F˛ˇF

˛ˇ

�
; (12.21)

and the equations of motion of the coupled system read

Eq. (12.3) , F ��I� D 0 (Inhomogeneous Maxwell eqs.), (12.22a)

Eq. (12.4) , G�� D ��T�� (Einstein field eqs.). (12.22b)

We assume that F�� D A�;� � A�;� with the gauge field A�, so that the homogeneous
Maxwell equations Eq. (11.69) are identically satisfied.

If we combine Eq. (12.21) with Eq. (12.22b), we obtain the ⁂ Einstein-Maxwell equations

R�� �
1

2
Rg�� D �

�

4�

�
F��F

�
� C

1

4
g��F˛ˇF

˛ˇ

�
: (12.23)

The crucial (and surprising) insight is that Eq. (12.23) [equivalently: Eq. (12.22b) and
Eq. (12.21)] already contains the inhomogeneous Maxwell Eq. (12.22a):

G�� D ��T��
�

H) F ��I� D 0 : (12.24)
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So writing down the Einstein field equations – with an explicit expression of the energy-
momentum tensor in terms of the matter fields on the right – is tantamount to writing down
all equations of motion!

For more details [and a proof of Eq. (12.24)] seeMisner et al. [2] (§20.6, pp. 471–483).

For a fully “geometrized” formulation of Einstein-Maxwell theory see Ref. [154].

12.1.1. Newtonian limit

We now want to study the relation between the EFEs and Newtonian mechanics to determine the Einstein
gravitational constant � via a correspondence principle.

11 | Non-relativistic limit:

• Slowly varying, weak gravitational fields!Metric almost Minkowskian:

g��.x/ D ��� C h��.x/ with small perturbation jh��.x/j � 1 (12.25)

In the following, we keep only the lowest order terms in h�� .

• Slow bodies (v � c)! Source of gravity = Mass density �.x/ (= rest energy)

T�� D

(
�c2 �� D 00

0 otherwise
) T D T �� D �c

2 (12.26)

The energy-momentum tensor of a ↑ perfect fluid of mass-energy density �.x/, pressure
p.x/, and 4-velocity field u�.x/ is given by

T ��.x/ D
�
�C

p

c2

�
u�u� � pg�� : (12.27)

In a comoving frame (where the fluid is at rest), it is u� D .c; 0; 0; 0/ and g�� D ��� so that

T �� D diag
�
�c2; p; p; p

� p�0
� diag

�
�c2; 0; 0; 0

�
(12.28)

if we assume the pressure to be negligible wrt. the rest energy.

12 | ^ �� D 00 in Eq. (12.11)
ƒ D 0
����!

We are interested in the �� D 00 component because in Eq. (11.65) we related this component of
the metric with the Newtonian gravitational potential in the non-relativistic limit.

R00 D �
�

2
�c2 C���O.h/ (12.29)

We drop h��.x/ on the right-hand side because this is a higher-order perturbation that can be
neglected for jh�� j � 1.

i | Because of h��.x/ there is no global inertial coordinate system; but there is a coordinate
system where O.�/ D O.h/ with connection coefficients � � j���� j.

Eqs. (10.104) and (10.106)!

R00 D @0�
�
0� � @��

�
00 C��

��
O.h2/ (12.30)
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ii | We assume that all masses move slowly (or not at all), so that we can drop time derivatives:

R00D����@0�
�
0� �����@0�

0
00 � @i�

i
00 � �@i�

i
00 (12.31)

with Christoffel symbols Eq. (10.79)

� i00
12.25
� �

1

2
@ih00 : (12.32)

Here we also dropped time derivatives.

!

R00 �
1

2
@i@

ih00 D �
1

2
�h00 (12.33)

Here we used ��� for pulling indices up/down since the modification by h�� yields higher-
order terms O.h2/.

iii | Eq. (12.29)
Eq. (12.33)
������!

�h00 � ��c
2 (12.34)

13 | Einstein gravitational constant:

Recall that we can identify the 00-component of the metric with the Newtonian gravitational
potential in the non-relativistic limit:

Eq. (12.34)
Eqs. (11.65) and (12.25)
�������������! (h00 � 2�=c2)

�� D
1

2
�c4� cf. Newtonian gravity Eq. (8.4): �� D 4�G� (12.35)

The validity of Newtonian gravity in the non-relativistic limit requires the identification:

� D
8�G

c4
� 2:076 65 � 10�43N�1 (12.36)

• � plays the role of a coupling constant in Eq. (12.10): It describes the coupling between
metric/geometry (= gravitational field) and matter. If you set � to zero, matter and energy no
longer curve spacetime and gravitational systems (like our solar system) can no longer exist.

• The fact that � is extremely small (in units of everyday life) tells us that the coupling of matter
to the spacetime geometry is extremely weak. Note that this weakness is due to the smallness
of Newton’s gravitational constantG and the largeness of the speed of light c.

This explains why it took us so long the figure out that masses curve spacetime: Since �
is so small, spacetime is extremely“stiff” (much stiffer than steel or glass), so that masses
of everyday life have no perceivable effect on it. This is also why space around us is essen-
tially Euclidean, despite the presence of Earth. In an imaginary world where � � 1N�1,
space(time) would “wobble” like jelly when you move; you could see this because of the
→ deflection of light and → gravitational lensing. For example, you could tell whether an opaque
bottle is full or empty from the way it distorts what you see in its vicinity.

14 | Newtonian dynamics:
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i | ^ Geodesic equation Eq. (11.45) for a test particle:

d2x�

d�2
D ��

�

˛ˇ

dx˛

d�
dxˇ

d�
(12.37)

In the non-relativistic limit, this should lead to Newton’s equation in a gravitational field.

ii | ^ Non-relativistic particle: � � t D x0=c and u� D dx�

d� � .c; 0; 0; 0/

Eq. (12.37)!
d2xi

dt2
D �� i00c

2 12.32
D

1

2
c2@ih00 D �

1

2
c2@ih00 (12.38)

iii | Comparison with the Newtonian equation of motion Eq. (8.5):

REx D �r� : (12.39)

Identification: � D c2

2
h00!

g00
12.25
D �00 C h00 D 1C

2�

c2
3 (12.40)

This is consistent with Eq. (11.65).

12.1.2. The cosmological constant

15 | Cosmological constant:

To find an interpretation for the cosmological constantƒ, we study its effects on non-relativistic
Newtonian physics:

i | Retrace our steps to derive the non-relativistic limit of the EFEs above, but now including
the cosmological constant:

Add ƒg00 � ƒ�00 on right-hand side of Eq. (12.29)
ı
�!

�� D 4�G��ƒc2 � 4�G.�C �ƒ/ (12.41)

with additional “mass density” �ƒ WD �ƒc2=.4�G/

ii | ^ � D 0 (vacuum) & ƒ ¤ 0:

�� D �ƒc2 D const ) �.Er/ $ �
ƒc2

6
r2 (12.42)

The solution follows with the boundary condition �.E0/ D 0.
ı
�! Gravitational acceleration:

Eg.Er/ D �r� D
ƒc2

3
Er D

(
repulsive ƒ > 0

attractive ƒ < 0
(12.43)

• Note that our choice to set the gravitational potential to zero in the origin Er D 0 is
arbitrary: Consider two test bodies at positions ErA and ErB . Because of the universality of
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free fall their masses don’t matter, and their relative acceleration due to the gravitational
potential is

EaAB D Eg.ErA/ � Eg.ErB/ D
ƒc2

3
.ErA � ErB/ D

ƒc2

3
�ErAB : (12.44)

This demonstrates how strange the effect of the cosmological constant is: All bodies
accelerate away or towards one another, and the acceleration only depends on and
is proportional to their relative distance vector. The effect is therefore completely
homogeneous and space behaves like a dough that rises or collapses, with massive
bodies being dragged along like raisins.

• Thusƒ > 0 acts like“antigravity” and blows up the universe,ƒ > 0 does the opposite.

• For largeƒ > 0, the universe would blow up so fast that neither stars nor galaxies could
form. Conversely, for largeƒ < 0 the universe would have already collapsed. Thus we
can exclude both large positive and large negative values forƒ (→ below).

iii | We can conclude:

The cosmological constant makes the non-relativistic limit of general
relativity deviate from Newtonian mechanics: It predicts a homogeneous
long-range repulsion (ƒ > 0) or attraction (ƒ < 0) that increases with the
distance. Thus, if it ƒ is non-zero, it must be very small to be consistent with
our observations and can only be relevant on cosmological scales.

• Einstein introduced the cosmological constant in 1917 in“Kosmologische Betrachtungen
zur allgemeinen Relativitätstheorie” [14] [Eq. (13a) on p. 151, Einstein denoted ourƒ by
�]. Its purpose was to allow for cosmological solutions of the EFEs that describe a static
and finite universe (at this time, it was widely believed that the universe was static).

When Edwin Hubble showed 1929 that the universe is actually expanding (and therefore
non-stationary) [155], the cosmological constant lost its purpose and was abandoned
by Einstein and contemporaries (though Einstein was quite stubborn and hesitant to
acknowledge non-stationary solutions as mathematically sound and physically reason-
able [156–158]). Einstein later referred to the introduction of the cosmological constant
as“his biggest blunder” [159].

In hindsight, Einstein’s “biggest blunder” was not the introduction of the cosmological
term in the first place (given the state of knowledge in 1917, it was a reasonable approach),
but his later refusal and hesitant acceptance of non-static solutions, supporting evidence
notwithstanding.

• How small is small? First, note that

Œƒ�
12.12
D ŒR�

10.117
D ŒR�� �

10.114
D ŒR���� �

10.105
D L�2 (12.45)

so thatƒ�1=2 is a length scale. Since the Newtonian limit has been successfully tested
in our solar system (without any evidence for strange long-range acceleration effects),
modifications due to ƒ, if present, must be much larger than this length scale; this
yields an upper bound

jƒj . .Size of the solar system/�2 (12.46)

for the cosmological constant. For more details, see Refs. [160, 161].

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



GR → THE EINSTEIN FIELD EQUATIONS

330
PAGE

• Today we know that the universe is not only steadily expanding: the expansion is
accelerating. In a strange turn of events, these observations led to a revival of the
cosmological constant, because it can be used to model such accelerated expansions
(→ƒCDM). By now, there is striking evidence thatƒ > 0 in our universe [162, 163].
The physical mechanism behind a non-zero cosmological constant is unknown (↑ dark
energy).

• We can bring the cosmological term in Eq. (12.10) to the other side,

G�� D ��

�
T�� C

ƒ

�
g��

�
� ��

�
T�� C T

vac
��

�
; (12.47)

which suggests the definition of a“vaccuumcontribution”to the total energy-momentum
tensor:

T vac
�� D

ƒ

�
g�� : (12.48)

In this reading, even“empty” space (T�� D 0) contains a homogeneously distributed
form of energy (T vac

�� ¤ 0) that acts as a source of gravity and is responsible for blowing
up or collapsing spacetime.

While this may sound exotic, it is actually what one would expect from ↑ quantum field
theory and the ↑ Standard Model of particle physics: In quantum mechanics, you learn
that even the ground state (= lowest energy state) of a harmonic oscillator has a finite
↓ ground state energy of „!

2
. The same is true for the ground state (= vacuum) of the

quantum fields that permeate space and describe all the fundamental particles (leptons,
quarks, gauge bosons). That is, quantum field theory predicts that even the vacuum
has a finite “vacuum energy density”, and it is reasonable to conjecture that this might
translate into the cosmological constant of general relativity in the classical
limit.

But there is a problem: We argued above thatƒ ¤ 0 can only be small. But quantumfield
theory tells us that the vacuum energy should be large; more precisely: the cosmological
constant predicted by quantum field theory is by a factor of 1050 � 10120 larger than
the observed one (the factor depends on how exactly one evaluates quantum field
theory)! This is of course ridiculous and has been dubbed “the worst prediction in
the history of physics.” It is at present unknown how to solve this conundrum, see
Refs. [160, 161, 164–166] for more details on the ↑ cosmological constant problem.

• To understand why a contribution to the HEMT of the form Eq. (12.48) can be inter-
preted as the energy of the vacuum, we can use the (classical) Klein-Gordon field theory
Eq. (11.116):

L.�; @�; g/ D
1

2
.@��/.@��/„ ƒ‚ …
Kinetic energy

�
m2

2
�2„ƒ‚…

Potential energy

: (12.49)

It’s Hilbert energy-momentum tensor (→ Problemset 4) reads [← Eq. (11.118)]:

T�� D �;��;� �
1

2
g��

�
�;˛�;˛ �m

2�2
�
: (12.50)

The “vacuum” is the lowest-energy state �0 of the field. (In particle physics, the
quantum fields that describe fundamental particles permeate space; they cannot “go
away”. “Vacuum” then means “no particles”, which translates to “no excitation of
the field”.) Classically, the field of the lowest-energy state tries to minimize the kinetic
energy; and it can do so by being constant: �0 D const. The HEMT in the vacuum
state then reads

Eq. (12.50)
�0Dconst
HHHHH) T vac

�� D
m2

2
�20 g�� ; (12.51)
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which has exactly the form of Eq. (12.48) with the identificationƒ� D m2�20=2. This
explains the hypothesis that a non-zero cosmological constant could be due to the
vacuum energy of the (quantum) fields that describe the fundamental particles of the
Standard Model (or some other yet unknown field).

Remark: You may complain that the classical ground state of the Klein-Gordon field is
�0 D const D 0, since the field also minimizes the potential energy (which is a harmonic
potential �2), so that T vac

�� D 0. This is of course correct. But first note that this is
a feature of the particular potential chosen and does not affect the form T vac

�� / g�� ,
which is crucial for our argument. Furthermore, remember that we are actually dealing
with quantum fields in the classical limit. So actually one should use expectation values
to compute the classical HEMT: T vac

�� D
m2

2
h�2i0 g�� . And just like hx2i0 > 0 for a

quantum harmonic oscillator in its ground state (recall that it is a ↓ coherent state), one
also finds h�2i0 > 0 due to the quantum fluctuations of the Klein-Gordon field.
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