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↓ Lecture 22 [28.05.24]

11. Classical physics on curved spacetime

Ourmathematical toolbox is now fully equipped to formulategeneral relativity. In this chapter, we
start by assuming a spacetime metric as given, and study how relativistic mechanics and electrodynamics
can be formulated on this (curved) spacetime. Where the metric actually comes from will be discussed in
the next Chapter 12.

11.1. Spacetime

1 | Setting the stage:

Here are some facts:

• We live in 3 spatial and 1 time dimension.

For an argument why 3C 1-dimensional spacetimes are special, recall Section 4.4.

• The EEP requires the existence of ← locally inertial coordinates (← Section 10.3.1).

Recall that in such coordinates the metric locally looks like the Minkowski metric.

! Spacetime is a ← 4D Lorentzian manifold:

Spacetime � 4D Lorentzian manifold .M; g/

with pseudo-Riemannian metric g of signature .1; 3/

• Henceforth all manifolds are of this type. We indicate this by using Greek indices�; �; : : : D
0; 1; 2; 4 for tensors; Latin indices i; j; : : : D 1; 2; 3 are now reserved for the spatial compo-
nents of tensors.

• With the metric g we can measure lengths of curves on the spacetime manifold and norms
of and angles between vectors in the tangent bundle. There is also a lot of bonus structure:
The metric defines a Levi-Civita connection, which, in turn, defines concepts like parallel
transport, covariant derivatives, and curvature.

• Note that the global topology ofM is not specified by general relativity, e.g., whether
M is compact in all or some dimensions. For example, the universe could be periodic in one
or more spatial dimensions, i.e., it could be a torus. While currently there are no observations
that indicate a non-trivial topology, such topologies are also not conclusively ruled out and
subject to ongoing research [140]. (Note that even assuming a completely flat universe –
which is consistent with observations – does not rule out non-trivial topologies; recall the
flat torus in Section 10.2.3.)

2 | Geodesics on Lorentzian manifolds:

In Section 10.3.3 we considered generic (pseudo-)Riemannian manifolds. We are now interested in
D D 4-dimensional Lorentzian manifolds of signature .1; 3/ (“Spacetime”). This comes along
with a few peculiarities concerning geodesics on this spacetime:
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i | Null cones:

^ Tangent space TpM with basis f@�g induced by ← locally inertial coordinates:

! The ⁂ null cone is the subset of tangent vectors v D v�@� 2 TpM with

kvk2p D ds2p.v; v/ D ���v
�v�„ ƒ‚ …

locally inertial
coordinates

Š
D 0 : (11.1)

• That the null vectors of theMinkowskimetric � form a conewas discussed in Section 1.6.

• Recall [← Eq. (4.16)] that all other vectors with strictly positive (negative) Minkowski
norm are called ← time-like (← space-like). We adopt this nomenclature for vectors in
the tangent spaces of Lorentzian manifolds.

• We call the cone“null cone” and not “light cone” because the latter term is reserved
for a similar but distinct structure on the manifold (→ below).

! A Lorentzian metric induces a “null cone texture” on the manifold (→ below).

This means that you can think of a Lorentzian manifold as being covered with little null cones
that vary smoothly from point to point (not only their orientation, but also their “opening
angle” can vary!). The null cones live in the tangent spaces and indicate which directions on
the manifold are time-like, light-like (null), or space-like.

ii | Classification of geodesics:

^ Geodesic 
�.t/ in an arbitrary coordinate system and parametrization

We can use the null cone structure to classify geodesics on a Lorentzian manifold. To this
end, consider the sign of the norm (squared) of the “velocity vector” of a geodesic:

^ Sign of norm of tangent at geodesics:

sign k P
.t/k2
.t/ D sign
�
g��.
.t// P
.t/

�
P
.t/�

�
(11.2)

ı
�! Eq. (11.2) is…

• … independent of the coordinate system.

The tangent vectors P
.t/� contracted with the metric tensor yield a scalar.

• … constant along the geodesic.

It is easy to check by straightforward calculation that the norm of the tangent vector is
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constant along a geodesic:

dk P
k2

d�

D g��;� P

�
P
� P
� C 2g�� P


�
R
� (11.3a)

D 2g��;� P

�
P
� P
� � g��;� P


�
P
� P
� C 2g�� P


�
R
� (11.3b)

D 2 P
�
�
g��;� P


�
P
� �

1

2
g��;� P


�
P
� C g�� R


�

�
(11.3c)

10.129
D 0 (11.3d)

!k P
k2
 D const along a geodesic 
 .

This of course immediately follows from our observation that geodesics are autoparallel
curves, together with the metric-compatibility of the Levi-Civita connection.

• … invariant under reparametrizations.

The independence of the sign on the parametrization of the curve is easy to show if one
remembers that a reparametrization Q
.�/ D 
.t/ is given by a strictly monotone function
� D �.t/:

sign
�
d
.t/�

dt
d
.t/�

dt

�
D sign

�d Q
.�/�
d�

d Q
.�/�

d�

�
d�
dt

�2
„ ƒ‚ …
>0

�
D sign

�d Q
.�/�
d�

d Q
.�/�

d�

�
:

(11.4)

Note that the norm of the “velocity vector” itself (without the sign) does depend on
the parametrization! This makes sense if you think of the parameter as time: Changing
how you measure time of course changes how you measure velocity.

! sign k P
k2
 characterizes geodesics:


 time-like


 light-like (or null)


 space-like

9>=>; W, sign k P
k2
 D

8̂<̂
:
C1

0

�1

(11.5)

Hence there are three types of geodesics on a Lorentzian manifold.

• We adopt the same nomenclature also for spacetime curves that are not geodesics. In
this case, the claim that the sign is constant along the curve is not (necessarily) the
consequence of some dynamical law, but simply a feature of a particular curve.

• On the D D 4-dimensional spacetime of general relativity, the time-like
geodesics correspond to possible trajectories of free-falling bodies (also: possible time
axes). The light-like geodesics are the trajectories of, well, light rays. Space-like
geodesics are the analog of “straight lines” in space.

• There is a subtlety regarding light-like/null geodesics: Since their “velocity” vanishes
(by definition), their length Eq. (10.123) vanishes as well. As a consequence, we cannot
use their length s as an affine parameter �. To see what goes wrong, note that for
�.y/ D

p
y setting y D k P
k2
 D 0 in Eq. (10.128) is undefined (division by zero).

Luckily, this is only a technical inconvenience. Recall that in our setting, the equations
for autoparallel curves Eq. (10.60) and geodesics Eq. (10.131) are identical. While the
norm k P
k2
 of a null vector vanishes, the vector itself P
 i is a perfectly normal vector in
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the tangent space (courtesy of g�� being a pseudo-metric). We then can simply fall back
to the autoparallel equation Eq. (10.60) to describe null geodesics. The only difference
is then that the affine parameter of light-like solutions of Eq. (10.60) (or, equivalently,
Eq. (10.131)) cannot be interpreted as the length along the geodesic anymore.

iii | Light cones:

^ Point/Event E 2M ; Draw all null geodesics emanating from E

!⁂ Light cone of E:

Notes:

• Null geodesics remain null everywhere, i.e., their tangent vectors at every point lie on
the null cone of the corresponding tangent space. Since the metric is Lorentzian (but
otherwise arbitrary) the null cones can point in“different directions” at different points,
so that the light cone can be warped and deformed.

In summary: The null cones live in the tangent spaces attached to the manifold, the
light cone lives on the manifold itself and warps according to the local null cones (and
thereby the metric).

• Note how all null cones on the future light cone point “inward”, whereas all null cones
on the past light cone point “outward”. They act like unidirectional “pores” in a
membrane that allow time-like trajectories (not necessarily geodesics) to leave the past
light cone and enter the future light cone (but not to other way around).

• All time-like geodesics throughE stay within its past- and future light cone. Conversely,
all space-like geodesics remain outside of this light cone.

Note that because of curvature in the metric [← Eq. (10.140)], geodesics can“attract”
each other; in particular, two time-like geodesics emanating from a common eventmight
cross again at another event! (Example: Imagine two satellites orbiting earth on the
same orbit in opposite directions. Both are falling freely and – according to general
relativity– follow geodesics in spacetime. But they periodically meet each other,
i.e., their geodesics cross in spacetime repeatedly.)

• Not every time-/light-/space-like curve is a time-/light-/space-like geodesic! Here is an
example of a completely light-like curve on Minkowski space (in inertial coordinates):


�.�/ D .�; cos.�/; sin.�/; 0/ : (11.6)
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Indeed:

k P
k2
 D ��� P

�
P
� D 1 �

h
sin2.�/C cos2.�/

i
D 0 : (11.7)

OnMinkowski space, all geodesics are straight lines in inertial coordinates (because the
Christoffel symbols vanish in them); the helical curve above clearly isn’t a straight line,
i.e., it is no geodesic but still null everywhere.

• The null cone texture (also called a ↑ cone field) induces a ← partial order of events, which
encodes a ← causality structure on the spacetime manifold (recall Section 1.6 for the case
of Minkowski space). Up to a local (conformal) deformation of time- and length scales,
this structure is essentially equivalent to the Lorentzian metric [141]! This suggests
the intriguing possibility that the null cone texture (equivalently: the causal structure
of events) might be the truly fundamental field of general relativity, and the
Lorentzian metric is just a convenient tool to encode it.

(Note that a local“stretching”of themetric by a strictly positive scalar field,�.x/g��.x/,
does neither alter the null cone texture nor angles between tangent vectors, thus it is a
↑ conformal transformation. This is why one says that the null cone texture determines
the ↑ conformal class of the Lorentzian metric.)

For more details on Lorentzian manifolds, null cones, light cones, and the causal struc-
ture of spacetime, see the monograph [142].

• By comparison, in flat Minkowski space all geodesics are straight lines and never cross
twice:

Note how the null cone (which lives in the tangent space) of the reference event coincides
with its light cone (which lives on the manifold). Mathematically, Minkowski space R1;3

is not just a Riemannian manifold (with Minkowski metric �) but also an ↓ affine
space; this allows for a natural embedding of its tangent spaces into the manifold itself.
Minkowski space is therefore a rather “degenerate” case of a generic spacetime and is
not well suited to carve out the essential features of general relativity.

• Remember that there are locally inertial coordinates for every point of the manifold
where (1) the Christoffel symbols vanish and (2) the metric has the Minkowski form
(Section 10.3.1). This concept can be generalized:

For every geodesic, there is a coordinate system (defined in a“tube” around the geodesic)
such that on the geodesic, the metric takes the Minkowski form and the Christoffel
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symbols vanish (and so do the first derivatives of the metric). Such coordinates are
called ↑ Fermi normal coordinates [143] and are useful for a freely falling observer to
describe physics along (and close to) its time-like geodesics (which is then the time-axis
of these coordinates).

iv | Extremal properties of geodesics:

We defined geodesics by a variational principle Eq. (10.125). Hence they extremize their
Riemannian length locally. Since null geodesics have vanishing length, we focus here on
time-like and space-like geodesics.

^ Length of time/space-like geodesics 
 :

Proper time: LTimeŒ
� D

Z



q
Cg��dx�dx�„ ƒ‚ …

� c2dt2�.dx2Cdy2Cd´2/>0

(11.8a)

Proper distance: LSpaceŒ
� D

Z



q
�g��dx�dx�„ ƒ‚ …

� .dx2Cdy2Cd´2/�c2dt2>0

(11.8b)

Recall that the metric has signature .1; 3/ D .C;�;�;�/. The expressions below the
integrals are valid approximately in locally inertial coordinates.

^ Local variations (in locally inertial coordinates; geodesic w.l.o.g. along coordinate axis):

!

Time-like geodesics are local maxima of proper time.

Space-like geodesics are local saddle points of proper distance.

3 | Proper time:

Which quantitiy corresponds to the time interval�� (proper time) measured by an ideal clock in
general relativity?

Requirements:

• Correspondence principle:

general relativitymust reduce to special relativity if the spacetime manifold
is flat Minkowski space: .M; g/ D .R4; �/ D R1;3.
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Remember that we established in Section 2.4 that the time measured by a clock moving
along an arbitrary time-like trajectory 
� W Œ�a; �b�! R1;3 in Minkowski space is given by
[Eqs. (2.25) and (4.14)]

��Œ
� D
1

c

Z �b

�a

d�
p
��� P
� P
� : (11.9)

This expression is valid in global inertial coordinate systems.

• General covariance:

Following GRP , the expression for�� must be a geometric property of the trajectory 
 that
depends on the metric of the spacetime manifold, but not on the chosen coordinates and/or
parametrization of the curve.

These conditions suggest the following definition of the propert time in general relativity:

^ Clock following time-like trajectory 
 W Œ�a; �b�!M on arbitrary spacetime .M; g/:

¡! 
 is not required to be a geodesic.

!⁂ Proper time measured by this clock:

��Œ
� WD
1

c

Z �b

�a

d�
q
g��.
.�// P
� P
� �

1

c

Z



q
g��.x/dx�dx� (11.10)

• Note that, because 
 is a time-like curve by assumption, the expression under the squareroot
is always strictly positive.

• That Eq. (11.10) is the correct expression for the reading of ideal clocks following arbitrary
time-like trajectories on arbitrary spacetimes is reasonable, but it is not a “mathematical
necessity” – it is a prediction of general relativity that can be experimentally assessed
by its physical implications (→ later).

This is actually a rather subtle point: What is an ideal clock? The only sensible thing to do is
to declare any dynamic physical process that counts time according to Eq. (11.10) as an ideal
clock. That ideal clocks measure Eq. (11.10) becomes then a tautology and physically vacuos.
That physical systems exist that (up to some limiting acceleration) measure Eq. (11.10) as
predicted by general relativity is not, however. Atomic clocks, for instance, turn out
to be rather good and robust approximations of ideal clocks, whereas pendulum clocks are
very sensitive to accelerations and quickly deviate from Eq. (11.10). This deviation, however,
is not a feature of time itself, but a consequence of the particular dynamical law governing
the motion of a pendulum under accelerated motion. Conversely, to verify that atomic clocks
do not suffer from such effects, and therefore are good proxies for measuring proper time,
one can check whether their readings match the predictions of general relativity for
�� in various situations, e.g., in the presence of gravitational fields (→ later). There are also
more direct, operational procedures (using light rays and freely falling test particles) to assess
how closely a physical process resembles an ideal clock [144] (→ below).

• Here is an analogy to demystify clocks: The voltage Uab between two points Era and Erb is
given by the line integral of the electric field EE.Er/:

Uab D �

Z Erb

Era

EE � dEr : (11.11)
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A ↓ voltmeter is a measurement device that exploits electrodynamic processes to measure
Uab , and thereby a particular property of the electromagnetic field. Voltmeters are no
magical devices that, by decree, always measure the quantity Eq. (11.11) (this would be an
ideal voltmeter, which, unfortunately, you cannot buy). A“good” voltmeter is a device that
exploits a physical process such that its output correlates with Eq. (11.11) for a wide range of
voltages; however, if you exceed its voltage ratings, this is no longer true and the readings are
no longer reliable.

Similarly, clocks are measurement devices that exploit some physical process to produce
outputs that correlate with the quantity Eq. (11.10), and thereby measure a property of the
metric field g��.x/. An ideal clock does so for all curves 
 in all conceivable metric fields
g��; a “good” clock (like an atomic clock) does so approximately under a wide variety of
circumstances, while a “bad” clock (like a pendulum clock) has only a very narrow range of
applicability (e.g., unaccelerated trajectories).

• According to our discussion above, time-like geodesics correspond to trajectories of clocks
along which they run fastest. This generalizes our discussion of the twin “paradox” in
Section 2.4, where we concluded that the twin staying home (in an inertial system, we ignore
the gravitational effects of Earth) ages quicker than the one following an accelerated trajectory
with his rocket. In our new reading, the earth-bound twin follows a geodesic in Minkowksi
space; by contrast, the rocket-twin follows a non-geodesic time-like curve in Minkowski space.

• In specific coordinate systems, the integral Eq. (11.10) can look simpler.

For example, one can always choose a coordinate system Ox� with the clock fixed in the
origin E0 (recall the discussion in Section 9.2 about the role of coordinates in general
relativity). In such coordinates, the proper time integral simplifies to

��Œ
� D
1

c

Z x0
b

x0
a

d Ox0
q
Og00. Ox0; E0/ �

Z �b

�a

d� ; (11.12)

so that the proper time interval is given by

d� D
1

c

p
Og00 d Ox0 with Og00 > 0 : (11.13)

But why stop there? Nothing prevents you from locally “stretching” and“squeezing” the
time coordinate d Qx0 WD

p
Og00d Ox0 to absorb the time-dependence of the metric so that

d� D
1

c
d Qx0 ; (11.14)

and thereby

��Œ
� D
1

c

Z Qx0
b

Qx0
a

d Qx0 : (11.15)

Such coordinates can be systematically constructed (↑ proper reference frames) for clocks on
arbitrary time-like trajectories (“observers”); seeMisner et al. [3] (§13.6, pp. 327–332) for
details.

Note that the evaluation of�� is not simplified by Eq. (11.15) in general because you must
know the integral boundries Qx0

a;b
in these coordinates (which is tantamount to knowing��).

4 | Radar coordinates:

In general relativity, coordinates are mathematical artifices that are used to catalog events,
while preserving their local causal relations (“continuity”). In contrast to the inertial coordinate
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systems of special relativity, there is no operational meaning associated to most coordinates!
To find special coordinate charts that have a physical interpretation (at least in some region of
spacetime) one can proceed the other way around: Define an operational procedure that assigns
four numbers to events in spacetime; this procedure then defines a particular kind of coordinate
system that can be identified with measurable quantities by construction. A particularly simple
example of such coordinates are radar coordinates:

This discussion is based on Ref. [145].

i | ^ Observer� Clock following a time-like trajectory 
.t/ W Œa; b�!M

¡! The trajectory does not need to be a geodesic. The clock displays t along 
 – but the
parameter t is not required to be an affine parameter (in particular: proper time). If t does
equal proper time Eq. (11.10) along 
 (up to some offset), we call the clock an ← ideal clock.

ii | ^ Event E 2M
^ Light signals emitted at 
.t1/ & reflected at E & received at 
.t2/:

!⁂ Radar coordinates .T;R; �; '/:

T WD 1
2
.t2 C t1/ ⁂ Radar time (11.16a)

R WD c
2
.t2 � t1/ ⁂ Radar distance (11.16b)

� WD h↓ Altitude of reflection at 
.t2/i (11.16c)

' WD h↓ Azimuth of reflection at 
.t2/i (11.16d)

To define the altitude and azimuth, one must fix a smooth orthonormal ↑ tetrad along 
 .

Note that one can really measure .T;R; �; '/: Think of E as a point on the trajectory of a
space probe flying away from Earth. You can periodically send directional radar pulses –
that are reflected by the space probe – and use your Earth-bound clock to measure t1 and t2
(together with the angles � and ' of the received reflection).

iii | Radar coordinates cannot cover all of spacetime in general!

The method can fail to assign coordinates to eventsE that are “shadowed” by other objects,
or because 
 andE are separated by an event horizon (e.g., a ↑ Rindler horizon). It can also
happen that the assignment is not unique if there are different null geodesics from 
.t1/

toE and/or fromE to 
.t2/; this can happen due to spacetime curvature (→ gravitational
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lensing). However, one can show that there is always a finite “tube” around 
 where these
peculiarities can be excluded.

! Radar coordinates cover a “tube” around 
 :

iv | Now that we can construct radar coordinates in the vicinity of a clock 
 , we can perform the
following experiment to check whether this clock is an ← ideal clock [i.e., the parameter t
measures proper time Eq. (11.10)] [144]:

a | Eject two free falling space probes along trajectories � and N� at t0.

b | Track their trajectories with radar pulses!

� D .R.T /; T / and N� D . NR. NT /; NT / (11.17)

(We omit the polar coordinates.)

c | 
 is an ideal clock at t0 iff k P
.t0/k
.t0/ D c since [← Eq. (11.10)]

d� �
1

c
ds D

1

c

q
g��dx�dx� D

1

c

p
g�� P
� P
�dt D

1

c
k P
k
„ƒ‚…
c

dt D dt : (11.18)

One can show [144, 145] that this is the case if and only if�
R00
T

1 � .R0
T /
2

�
TDt0

D �

"
NR00

NT

1 � . NR0
NT
/2

#
NTDt0

(11.19)

with the shorthand notationR0
X �

dR
dX .

This provides an operational procedure to check (in principle) that atomic clocks indeed
measure the proper time Eq. (11.10) and are therefore ideal clocks.

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



GR → CLASSICAL PHYSICS ON CURVED SPACETIME

290
PAGE

5 | Simultaneity:

i | ^ Two nearby clocks 
 and Q
 :

We assume that they are within each others “tube” where radar coordinates can be defined.

We say:

B is ⁂ Einstein synchronous to A W, T .Qt / D 1
2
.t2 C t1/ D Qt

A is ⁂ Einstein synchronous to B W, QT .t/ D 1
2
.Qt2 C Qt1/ D t

(11.20a)

(11.20b)

• Note that Qt is measured by clock B while T .Qt / is computed from t2 and t1 which are
measured by clock A.

• This is simply ← Einstein synchronization in special relativity (← Section 1.1 and
→ Problemset 1 last semester) generalized to arbitrary spacetimes. The synchronization
constraint Eq. (11.20) is also known as ⁂ Radar synchronization.

• Recall that Einstein synchronization in special relativity (i.e., on Minkowski
space) could be proven to be symmetric and transitive for clocks at rest in the same
inertial frame (→ Problemset 1 last semester). In the more general situation considered
here, Einstein synchronization is neither symmetric nor transitive (note that, in general,
there is no inertial frame that encompasses both clocks), see [145].

• One can show [145] that if the synchronization is symmetric (as any good synchronization
should be), then the radar distances R.Qt / from A to B and QR.t/ from B to A are
necessarily constant and equal: R.Qt / � QR.t/ � const.

ii | We now want to study possible obstructions to synchronizing clocks in curved spacetimes.
For simplicity, we consider two infinitesimally separated clocks (right sketch).

This calculation follows Landau & Lifshitz [146] (§84, pp. 233–236).

^ Two infinitesimally close clocks A and B separated by dEx D fdxng:

A synchronous to B
Eq. (11.20)
(HHHH) x0 C ıx0„ƒ‚…

Offset

D
1
2
. Qx02 C Qx

0
1/ (11.21)

• We assume that the position of the clocks is labeled by xm and their reading corresponds
to the coordinate x0, i.e., these are coordinate clocks. They are not required to be ideal
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clocks ticking off proper time; the following argument therefore applies to arbitrary
coordinate systems with time-like coordinate x0 and space-like coordinates x1;2;3.

We say that a coordinate x0 is time-like (at a given point p 2 M ) if the curve onM
defined by varying x0 and keeping xm constant is a time-like curve in p (in a similar
way we define xm to be space-like). Mathematically, this means that @0 � @

@x0 2 TpM

is a time-like vector:

k@0k
2
p D gp.@0; @0/ D g��.p/ dx

�.@0/„ ƒ‚ …
ı

�
0

dx�.@0/„ ƒ‚ …
ı�

0

D g00 > 0 : (11.22)

Not every coordinate system has this property, but because of the Lorentzian signature
of g, there are always (many) such coordinate systems. These coordinate systems are
useful because their time-axis corresponds (at least locally) to possible trajectories of
physical bodies (not necessarily free-falling ones). Thus one can think of the coordinate
x0 as the time (not necessarily proper time) measured by some (not necessarily free-
falling) clock tracing out the time-axis through spacetime. Note that a coordinate can be
time-like in one region of spacetime, become null at some point, and then space-like in
another region. So the“type” of a coordinate is not fixed like that of a geodesic. Note
also that not every coordinate system is guaranteed to have a time-like coordinate at all
(this is possible for non-orthogonal coordinates which are rarely used).

• Note that the offset ıx0 could be absorbed into one of the clocks by shifting its reading
(corresponding to a coordinate transformation). But we can also simply agree that two
events at A and B are simultaneous iff their local clocks differ by ıx0 (→ below). This
is a generalization of the synchronization condition Eq. (11.20) with no downsides, at
least for the comparison of two clocks.

Let w.l.o.g. Qx0i � x
0 C dx0i !

x0 C ıx0 D x0 C 1
2
.dx02 C dx01/„ ƒ‚ …

ıx0

(11.23)

iii | For the light signals used to synchronize the clocks we have:

ds2 D g00
�
dx0

�2
C 2g0mdx0dxm C gmndxmdxn

Š
D 0 (11.24)

Here we separated the temporal from the spatial components n;m D 1; 2; 3.

Solve for dx0 � dx0i
ı
�!

dx0i D
1

g00

h
�g0mdxm �

p
.g0mg0n � gmng00/dxmdxn

i
(11.25)

The minus sign corresponds to dx01 < 0.

iv | Eq. (11.23)
Eq. (11.25)
������!

ıx0 D �
g0m

g00
dxm , g00ıx

0
C g0mdxm D 0 (11.26)

• Interpretation: ıx0 is the difference of the reading of two infinitesimally nearby clocks
A at Ex and B at Ex C dEx that indicates the time of two events happening simultaneously
according to Einstein synchronization.
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• You can think of ıx0 as a ← connection relating nearby clocks (cf Eq. (10.34)): If A
displays the time x0, we consider the time x0 C ıx0 D 1

2
. Qx02 C Qx

0
1/ displayed by B

as “equal” (in the terminology of connections: “parallel”, here better: simultaneous).
If ıx0 ¤ 0, the change in reading of nearby clocks is considered“fake”; this is not a
problem in principle: If you have two clocks where the reading t of one always coincides
with the reading t C�t of another, you don’t loose anything and can consider them
as being synchronized (as long as you know what�t is). However, there is a problem
coming from ıx0 ¤ 0 if you consider different paths in space to synchronize your clocks
(→ next).

v | ^ Closed path in space:

! g0m ¤ 0 ) ıx0
eD.ij /

¤ 0 ) �x0 �
P
e2Loop ıx

0
e ¤ 0 /

Only in coordinates with g0m D 0 , ıx0 D 0 the synchronization of clocks is path-
independent. (Example: Minkowski space with clocks corresponding to inertial coordinates
where ��� D diag .1;�1;�1;�1/.) If not, synchronizing clocks along a closed path can lead
to the identification of different times x0 and x0 C�x0 of the same clock as simultaneous!

• In the vicinity of every space-like slice (“hypersurface”) of an arbitrary spacetime it is
possible to construct a coordinate system in which g0m D 0. Because of Eq. (11.26), on
such slices the synchronization of clocks is consistently possible (= path-independent).
Furthermore, it is possible to tweak the coordinates such that g00 D 1 so that stationary
coordinate clocks (dEx D 0) measure proper time (= are ideal clocks): d�2 D 1

c2 ds2 D
g00dt2 C 0; such coordinates are called ↑ synchronous, seeMisner et al. [3] (§27.4,
p. 717).

• The above argument shows that, in general, it is possible to fill space with ideal clocks
and synchronize all of them. The question is whether they stay synchronized for all
times (i.e., whether is it possible to synchronize clocks throughout spacetime).

The answer turns out to be negative because the synchronous coordinates, while being
defined throughout space around a particular space-like hypersurface, cannot be ex-
tended to encompass all of spacetime (except for special cases like flat Minkowski space);
they necessarily form“time singularities” [147]. This conclusion is reasonable if one
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thinks of synchronous coordinates as being constructed by ejecting free-falling ideal
clocks from the hypersurface (with arbitrary spatial coordinates .x1; x2; x3/):

These clocks (the “time axes” of the synchronous coordinate system) follow geodesics.
But we already know that, in generic spacetimes with curvature, geodesics tend to
attract/repel each other and, eventually, cross. At this point the coordinate system
becomes singular because the map between events (= points on the spacetime manifold)
and coordinates is no longer unique.

6 | Spatial distances:

i | ^ Space-like curve 
 W Œ�a; �b�!M on arbitrary spacetime .M; g/:

¡! 
 is not required to be a geodesic.

!⁂ Proper distance:

LŒ
� WD

Z �b

�a

d�
q
�g��.
.�// P
� P
� �

Z



q
�g��.x/dx�dx� (11.27)

The minus is necessary because k P
k2 < 0 for a space-like curve.

¡! While mathematically the proper distance is defined completely analogous to the proper
time Eq. (11.10), its operational/physical role is very different: Whereas proper time can
be immediately identified as the time displayed by an ideal clock that follows a time-like
trajectory, there is nothing that“follows” a space-like trajectory; hence there is no immediate
physical interpretation associated to the proper distance defined above.

ii | To obtain an operationally meaningful concept of distance, it is reasonable to use the ← radar
distance R defined in Eq. (11.16) as a distance measure of spatially separated points.

To this end, consider again the two infinitesimally close clocks A and B from above:

! Coordinate time needed by radar pulse from B to A back to B:

dx0� WD Qx
0
2 � Qx

0
1 D dx02 � dx01

11.25
D

2

g00

p
.g0mg0n � gmng00/dxmdxn (11.28)
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! Proper time elapsed at position B during round trip:

d�2� D
1

c2
ds2� D

1

c2
g00

�
dx0�

�2
D

4

c2

�
g0mg0n

g00
� gmn

�
dxmdxn (11.29)

Note that B is stationary in the considered coordinates so that dxm� D 0 form D 1; 2; 3.

! Infinitesimal distance between A and B:

dl2 WD
�
cd��

2

�2
D

�
�gmn C

g0mg0n

g00

�
„ ƒ‚ …

DW Qgmn

dxmdxn

� Qgmn.x/dxmdxn

(11.30a)

(11.30b)

Qgmn: metric of three-dimensional space (in vicinity of B)

iii | Notes:

• It is straightforward to show that

�glm Qgmn $ ıln (11.31)

so that the inverse spatial metric is the negative of the spatial part of the inverse metric:

Qglm D �glm with Qglm Qgmn D ı
l
n : (11.32)

• In general, it is operationally meaningless to integrate dl over a spatial curve �:
R
�
dl .

While every infinitesimal distance element dl does make sense for some observer
(becausewe constructed it as the radar distance), this does notmean that adding different
such elements along a curve � with constant coordinate time x0 makes sense. This
is only reasonable if one can establish an unambiguous notion of simultaneity along
the spacetime curve defined by � and x0 D const – which is not always possible (as
discussed above). Thus, in general relativity, there is no general concept of a
“distance” between bodies that has objective and operational meaning.

(Note that we are not claiming that the length of a curve in space somehow depends on
“how fast it is traversed”: The spacetime curves we are considering are space-like, one
cannot “traverse” them in any meaningful way! Only for the special cases where the
metric g��.x/ is independent of time x0, the length of a spatial curve � can be defined
by
R
�
dl and has a meaning that is independent of coordinates.)

7 | Speed of light:

Let us briefly comment on the role played by the speed of light in general relativity.

• Recall (Section 1.5):

In the global inertial systems of special relativity, light always propagates with the
same velocity vmax D c, and no signal can move faster.

• Problem:

“Velocity” is an observer-/coordinate-dependent quantity that depends on the choice of
time and space coordinates. Objective statements about velocity therefore require the choice
of a distinguished class of coordinate systems.
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Note that this was also the case in special relativity: The coordinate velocity is only
constant c in inertial coordinates (where the coordinate velocity corresponds to a physical
velocity because inertial coordinates are, by definition, Cartesian). By contrast, in the Rindler
coordinates of an accelerated observer, the coordinate speed of light is only c locally, but can
be less or more than c away from the observer.

! ^ Local inertial coordinates:

The EEP suggests: !

The speed of light is constant (c) in locally inertial coordinates

at any point of spacetime (= as measured in a freely falling laboratory).

• ¡! Remember that in special relativity we went to great lengths to link the abstract
notion of an inertial coordinate system to an operationally defined contraption of synchronized
clocks and rods forming a Cartesian lattice. Observing (or measuring) events was then defined
via this information-gathering contraption, and, as stressed previously, is different from seeing
events (i.e., waiting for light signals to reach the camera of someone sitting in the origin of
the rod lattice; recall the ← Penrose-Terrell effect mentioned in Section 2.1 and→ Problemset 3
of last semester). Since, in special relativity, inertial systems were assumed to be
global, covering all of spacetime (i.e., the rod lattice was assumed to cover all of space and
the clocks remained synchronized for all of times) we could measure events (times, distances,
speeds) everywhere in spacetime, in particular: far away. Thus a statement like “the velocity
of a light signal at Alpha Centauri was measured to be c”makes sense because we have a
(magical) grid of synchronized clocks that reaches from Earth to Alpha Centauri (note that
synchronized is short for “synchronized for all times”, i.e., in particular, the clocks tick with
the same rate).

In Section 8.2 we argued that global inertial systems do not survive the presence of gravity:
they shrink to small, local patches on spacetime, namely free falling laboratories that are
small enough to be not affected by tidal forces. But this means that we also cannot construct
a universe-encompassing latticework of synchronized clocks, and, as a consequence, there is
no longer a well-defined concept of observing/measuring distant events! In particular, there
is no well-defined way for an observer located on Earth to measure the speed of a light signal
at Alpha Centauri, we can only point a telescope into the direction and watch (= see). This
is what astronomers do (it is all they can do) and they call it observing (they do it even in
observatories); but keep in mind that this is not what we refereed to as observing in the context
of special relativity! We will adopt this new terminology henceforth.

Thus, in general relativity, we can only measure the speed of light locally (if one
manages to setup a pair of synchronized clocks). The speed of distant light signals can only
be observed, not measured. The constancy of the speed of light above refers only to local
measurements, not to remote observations; the observed speed of light can be both smaller an
larger than c!

(Whether the lab in which a local measurement of the speed of light is performed is inertial
or accelerated actually doesn’t matter: one always measures c. This is so because accelerated
observers can describe physics locally by Rindler coordinates (→ Problemset 3), and in these
the local (coordinate) speed of light is also c.)

• ¡! If you calculate the speed of light in non-inertial coordinates, the result is not necessarily c.
For example, in the → Schwarzschild metric of a spherically symmetric mass, the (coordinate)
speed of light in Schwarzschild coordinates decreases when approaching the → Schwarzschild
radius. This corresponds to the well-known phenomenon that an observer far away from a
black hole sees light freeze when approaching the event horizon.
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Similarly, in Rindler coordinates (a useful coordinate system for observers with constant
proper acceleration, → Problemset 3), the (coordinate) velocity of distant light signals can be
less or more than c, depending on their position.

• Recall our discussion ← above on the cone field on Lorentzianmanifolds that encodes the local
causal structure of spacetime. The light cones are locally generated by null cones which, by
definition, are spanned by the tangent vectors of light rays. Thismakes the statement that“the
speed of light is constant in local inertial systems” a tautology in general relativity:
There is no fixed background of distinguished coordinates with respect to which you could
measure that c is constant. It is the finiteness of the speed of information propagation (e.g.,
by light) that guarantees a local causality structure on spacetime; this causality structure can
be encoded by the cone field. One can then, without loss of generality, choose units of time
and length such that, locally, the signals that span the null cones propagate with constant
velocity c.

We already touched this topic in Section 1.4 where we derived the Lorentz transformation.
There we realized that it is not somuch the constancy of the speed of light that is important but
its finiteness (the constancy follows from the finiteness, recall Eq. (1.73)). It is the finiteness
of the speed of information propagation that induces a local causal structure of events.

8 | Implementing Einstein’s Equivalence Principle EEP :

To implement the EEP into the physical models that are defined on the spacetime of general
relativity, one can employ the following procedure:

§ Principle 3: Minimal-Coupling Principle MCP (“Comma-goes-to-Semicolon Rule”)

i | Take a physical model (equation) in manifestly Lorentz covariant form.

The model is of course assumed to be valid in special relativity (i.e., describe
the laws of nature correctly in the globally inertial coordinates of flat Minkowski space).

ii | Convert it into a generally covariant form by the following substitutions:

@� 7! r� (or ; 7! I) and ��� 7! g��.x/ (11.33)

If the physical model is given by a Lagrangian density (i.e., in an integral form), onemust
also ensure that the integrand transforms as a scalar by the substitution d4x 7! d4x

p
g

as discussed in Section 10.3.1.

iii | Assert the validity of this model in the curved spacetimes of general
relativity.

Examples: → Sections 11.2 and 11.3.

• The MCP has a similar status as ↓ canonical quantization in quantum mechanics: It provides
a (mathematically supported) guiding principle to “update” an “old” physical model to a
“new” form that adapts the model to a more fundamental theory, while respecting some sort
of correspondence principle (which is necessary because the outdated model works well in
some domain).

Furthermore, the MCP ensures (at least in the cases relevant to us, → below) that the con-
structed models respect the EEP , in that it asserts the absence of explicit (non-minimal)
couplings to the curvature tensor (which, if present, would allow local experiments to detect
the presence of a gravitational field, → below).
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• Just as canonical quantization works for most situations encountered in physics – but fails in
certain edge cases (↑ Weyl quantization, ↑ Groenewold’s theorem) –, the MCP works for most
relativistic theories (in particular, all problems that we encounter in this course), but has
some subtle ambiguities that prevent a unique outcome. The problem is that higher-order
covariant derivatives do not commute, whereas higher-order partial derivatives do:

: : : @�@� : : : D : : : @�@� : : : (11.34a)

‹ # # ‹

: : :r�r� : : :
10.71
¤ : : :r�r� : : : (11.34b)

Depending on which order of covariant derivatives you pick, you end up with theories that
are equivalent in special relativity (i.e., on flat Minkowski space), but differ by a
curvature-dependent term ingeneral relativity. Thus the MCP is only a unique recipe
for first-order differential equations [148]. (Luckily, we are physicist and can experiments let
decide which generally covariant model describes the laws of nature correctly.) For more
details on this ordering ambiguity, seeMisner et al. [3] (pp. 388–389, §16.3 and pp. 390–391,
Box 16.1).

• Here is an example to illustrate the MCP and contrast it to non-minimal coupling. The example
also shows that non-minimal coupling typically leads to a violation of the EEP (put differently,
the EEP lends credence to the MCP ):

The real Klein-Gordon field is given by the Lorentz covariant action (in ← Section 7.1 we
discussed the complex Klein-Gordon field)

SŒ�� D

Z
d4x

�
���.@��/.@��/ �m

2�2
�
D

Z
d4x

�
�;��;� �m

2�2
�
; (11.35)

the Euler-Lagrange equations of which are the Klein-Gordon equation�
@2 Cm2

�
�.x/ D 0 : (11.36)

If we want to study the Klein-Gordon field in the curved spacetime of general relativ-
ity, the MCP tells us to construct the generally covariant action (→ Problemset 4)

Sg Œ�� D

Z
d4x

p
g.x/

�
g��.x/.r��/.r��/ �m

2�2
�

(11.37a)

D

Z
d4x
p
g
�
�I��I� �m

2�2
�
; (11.37b)

which reduces to Eq. (11.35) on flat Minkowski space (g D �). The corresponding equation
of motion is the generally covariant Klein-Gordon equation�

�Cm2
�
�.x/ D 0 ; (11.38)

where � is the ← Laplace-Beltrami operator Eq. (10.97). In locally inertial coordinates,
Eq. (11.38) reduces to Eq. (11.36), realizing the EEP (check this!).

Now let us couple the Klein-Gordon field in a non-minimal way to gravity by adding a scalar
interaction with the Ricci scalarR.x/ [← Eq. (10.117)] to the action (green):

QSg Œ�� D

Z
d4x
p
g
�
�I��I� �m

2�2 � �R.x/�2
�
; (11.39)

where � 2 R is a coupling constant. The generally covariant equation of motion is clearly�
�Cm2 C �R.x/

�
�.x/ D 0 ; (11.40)

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



GR → CLASSICAL PHYSICS ON CURVED SPACETIME

298
PAGE

whereR.x/ depends on the metric g��.x/.

But Eq. (11.40) does not reduce to the Klein-Gordon Eq. (11.36) of special relativity
in local inertial frames! This is so because the term �R.x/ is a scalar that does not vanish on a
curved spacetime in any coordinate system (in particular, locally inertial coordinates). Thus
Eq. (11.40) explicitly violates the EEP because, using local measurements of the evolution of
the Klein-Gordon field �, a local observer can detect the presence of curvature (and thereby
gravity).

• Be careful when making statements about higher-order covariant derivatives! For example, on
a flat Minkowski space in globally inertial coordinates, all covariant derivatives in a generally
covariant equation become partial derivatives:

T :::
I˛Iˇ

g��!���

�������! T :::;˛;ˇ : (11.41)

This is true because the Christoffel symbols are identically zero everywhere, so that all their
derivatives vanish as well.

By contrast, on a curved spacetime in locally inertial coordinates [with metric as in Eq. (10.89)],
this is not true:

T :::
I˛Iˇ

g��! Ng��

�������! ����T :::;˛;ˇ : (11.42)

To see this, note that the left-hand side contains derivatives of the Christoffel symbols – which
do not necessarily vanish in locally inertial coordinates (because coordinate transformations
cannot make curvature go away).

This also follows from the Ricci identity Eq. (10.71):

TkIlIm � TkImIl D R
i
klmTi : (11.43)

On a curved space, the right-hand side does not vanish in any coordinate system, so that
covariant derivatives do not commute; in particular, they cannot become partial derivatives.

This line of reasoning leads to a peculiar conclusion: Applying the MCP to higher-order
differential equations can lead to generally covariant equations that contain curvature terms,
and thereby violate the EEP (in its strictest form)! (Note that they do obey a correspondence
princple in the sense that they reproduce the physics of special relativity on flat
Minkowski space.) This phenomenon is of course rooted in the fact that in locally inertial
coordinates themetric is onlyMinkowskian to first order. Formore details on this predicament
(that most textbooks seem to be silent about) see Ref. [149]. Carroll argues that curvature
terms (from non-minimal or higher-order minimal coupling) may actually be present, but
should be supressed by the Planck scale (↑ Ref. [4], §4.7, pp. 179–181).
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