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↓ Lecture 21 [14.05.24]

6 | Corollaries:

• Working with a metric-compatible connection has the benefit that one can pull indices up
and down within a covariant derivative:

Ti Ik D
�
gimT

m
�
Ik
D gimIk„ƒ‚…

D0

Tm C gimT
m
Ik

10.74
D gimT

m
Ik (10.83)

• The inverse metric is also covariantly constant:

gik
Il D 0 (10.84)

To show this, note that ıi
j Il
D 0 [Eq. (10.57b)] and use the Leibniz product rule:

0 D ıij Il D .g
ikgkj /Il D g

ik
Ilgkj C g

ikgkj Il

10.74
D gik

Ilgkj : (10.85)

7 | Local inertial coordinates: (Details: → Problemset 2)

i | ^ Levi-Civita connection in ← locally geodesic coordinates at p 2M :

(For simplicity, we assume that the point p has the coordinates u.p/ D 0.)

@lgik.0/
10.75
D �mil .0/„ ƒ‚ …

D0

gmk C �
m
kl .0/„ ƒ‚ …
D0

gim D 0 (10.86)

! In these coordinates, the metric tensor is constant in linear order:

gij .x/ D gij .0/C
1

2
@˛@ˇgij .0/ x

˛xˇ CO.x3/ (10.87)

ii | ^ Affine coordinate transformation: Nxi DM i
j x

j C bi
Eq. (10.39)
������! N� i

kl
D 0

Note that under affine/linear coordinate transformations, the connection coefficients trans-
form like tensors! In particular, if the connection coefficients vanish in one (geodesic) coor-
dinate system, they vanish in all coordinates that can be reached by affine transformations;
i.e., geodesic coordinates are not unique!

! Use linear transformation to bring metric of signature .r; s/ into the form

Ngij .0/ D diag.C1; : : : ;C1„ ƒ‚ …
� r

;�1; : : : ;�1„ ƒ‚ …
� s

/ : (10.88)

That this is possible follows from ↑ Sylvester’s law of inertia: First, use the symmetry of the
metric to diagonalize the matrix gij .0/ by an orthogonal transformation, then use another
non-singular transformation to normalize the eigenvalues to˙1.

iii | ^ Special case .r D 1; s D 3/ = Lorentzian manifold!

Metric in ⁂ locally inertial coordinates:

Ng��. Nx/
Nx!0
� ��� C

1

2
@˛@ˇ Ng��.0/ Nx

˛
Nxˇ (10.89)
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• In words: For every point of a Lorentzian manifold there exist coordinate systems such
that the metric in this point takes the Minkowski form ��� and is constant in linear
order; we call such charts locally inertial coordinates.

• Recall that Lorentz transformations are linear and leave the Minkowski metric invariant
[← Eq. (4.21)]. This implies that locally inertial coordinates are also not unique: You can
use arbitrary Lorentz transformations without changing the structure of Eq. (10.89).

8 | Useful relations:

Here we list a few identities that will be useful for many calculations in general relativity.

You prove these relations in → Problemset 2.

• The trace of the Christoffel symbols simplifies to

� iki $
1

2
gimgim;k : (10.90)

• With the determinant of the metric g D det.gim/, the inverse metric can be written as

gim $
1

g

@g

@gim
: (10.91)

• With Eqs. (10.90) and (10.91), the trace of the Christoffel symbols takes the simple form

� iki D
1

2g
g;k D

�
ln
p
˙g

�
;k
; (10.92)

such that˙g > 0.

Note: In general relativity it is det.g��/ < 0 (because of the Lorentzian signature)
and we redefine g WD � det.g��/ > 0 to simplify expressions.

• The other trace of the Christoffel symbols can also be written in a compact form:

gkl� ikl $ �
1
p
g

�p
ggim

�
;m
: (10.93)

• It is straightforward to show the following useful identity:

gik.g
kl /;m $ � .gik/;m gkl : (10.94)

• The ⁂ covariant divergence of a contravariant vector field is defined as one would expect:

Ai Ii
10.92
D Ai ;i C A

l .ln
p
g/;l D

1
p
g

�p
gAi

�
;i

(10.95)

• For the covariant divergence of an antisymmetric .2; 0/-tensor there is a similar expression:

Aik
Ik $

1
p
g

�
p
gAik

�
;k

with Aij D �Aj i : (10.96)

• Eq. (10.95) can be used to rewrite the covariant Laplacian (divergence of a gradient) of a
scalar:

�� � �
Ii

Ii D
1
p
g

�
p
ggik�;k

�
;i
: (10.97)

The differential operator � maps scalar functions onto scalar functions and is known as
↑ Laplace-Beltrami operator.
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• Generalized divergence theorem:

i | ^ Coordinate transformation Nx D '.x/

!D-dimensional (oriented) volume element (more precisely: volume form) transforms
as (← Eq. (3.39))

dDNx D det
�
@ Nx

@x

�
dDx (10.98)

with ↓ Jacobian determinant det
�
@ Nx
@x

�
.

ii | The determinant of the metric transforms in the opposite way (← Eq. (3.54)):p
Ng D

ˇ̌̌̌
det

�
@x

@ Nx

�ˇ̌̌̌
p
g (10.99)

(Note the absolute value of the Jacobian determinant!)

iii | Hence the product of metric determinant and (oriented) volume element transforms
like a pseudo scalar: p

Ng dDNx D sign
�
det

�
@ Nx

@x

��
p
g dDx : (10.100)

Here sign
h
det

�
@ Nx
@x

�i
denotes the sign of the Jacobian determinant, which encodes

whether the coordinate transformation is orientation preserving (C1) or not (�1). This
makes

p
g dDx transform like a pseudo scalar.

If we are only interested in non-oriented volume elements, or restrict ourselves to
orientation-preserving coordinate transformations, Eq. (10.100) simplifies to a true
scalar transformation: p

Ng dDNx D
p
g dDx : (10.101)

This subtlety will not be important in the following and we use Eq. (10.101) henceforth.

iv | Eq. (10.101) is the reason why integrals over scalar quantities N�. Nx/ D �.x/ are form-
invariant under arbitrary coordinate transformations if we use the“modified” volume
element

p
g dDx for integration:

Z
dNx

p
g.x/„ ƒ‚ …

Scalar

�.x/„ƒ‚…
Scalar„ ƒ‚ …

Scalar

NxD'.x/
D

Z
dN Nx

p
Ng. Nx/ N�. Nx/ (10.102)

v | Using the covariant divergenceEq. (10.95) and themodified volume elementEq. (10.101),
we find the generalized form of the divergence theorem

Z
V

dDx
p
g Ai Ii

10.95
D

Z
V

dDx @i
�p
gAi

� Gauss
D

I
@V

d�i
p
g Ai ; (10.103)

where @V is the surface of V and d�i denotes theD � 1-dimensional surface element.
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10.3.2. TheRiemann curvature tensor

Now that we identified the special Levi-Civita connection (which can be computed from the metric), we
can also express its curvature tensor (then called Riemann curvature tensor) in terms of the metric as well:

Detailed calculations: → Problemset 3

9 | ^ Locally geodesic coordinates LG:

fRiklmg
LG
D
˚
giaR

a
klm

	LG 10.70
D gia

�
@l�

a
km � @m�

a
kl

�
(10.104)

Recall that the connection coefficients – but not their derivatives – vanish in these coordinates!

10 | Now use the explicit form of the Levi-Civita connection to find an expression in terms of the metric:

fRiklmg
LG 10.79
D

1

2

�
gim;k;l C gkl;i;m � gil;k;m � gkm;i;l

�
(10.105)

• Recall that gij;k D 0 in locally geodesic coordinates [← Eq. (10.86)].

• This expressions tells us that curvature prevents us from finding coordinates in which the
second derivatives of the metric vanish.

11 | In general coordinates, the expression becomes more complicated:

Riklm $ fRiklmgLG C gab
�
�akl �

b
im � �

a
km�

b
il

�
(10.106)

To show this, start from Eqs. (10.70) and (10.79) and use Eqs. (10.75) and (10.94).

12 | Algebraic identities:

• Eqs. (10.105) and (10.106)!

Riklm D �Rkilm ; Riklm D �Rikml ; Riklm D Rlmik (10.107)

In words: the Riemann tensor is antisymmetric in the first two and last two indices, but
symmetric if both pairs of indices are swapped.

• ⁂ First/Algebraic Bianchi identity:

The cyclic sums of Riemann tensors vanish identically:

Rihklmi � Riklm CRilmk CRimkl $ 0 (10.108)

The same is true for the cyclic sums of arbitrary triples of indices.

The relations Eqs. (10.107) and (10.108) are identities, i.e., their validity follows directly from the
definition of the Riemann curvature tensor, independent of the specific metric. This means that a
Riemann tensor inD-dimensions has less independent components as the naïve countD4 suggests.

For example, on theD D 4-dimensional spacetime of general relativity, at most 20 (and
not 44 D 256) numbers are needed to specify Riklm in every point of the spacetime manifold
(→ Problemset 3). [Beware: This does not mean that there are 20 physical degrees of freedom
in general relativity! Riklm is still a tensor and can be modified by arbitrary coordinate
transformations without changing its physical content. We will see → later that general rela-
tivity has a large gauge group (→ diffeomorphism invariance) so that there are way less physical
degrees of freedom than the 20 alluded to above.]
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13 | ⁂ Second/Differential Bianchi identity:

The cyclic sums of covariant derivatives of the Riemann tensor vanish identically:

RakhlmIni
� RaklmIn CR

a
kmnIl CR

a
knlIm $ 0 (10.109)

Proof. A neat trick to prove tensor relations is to choose a coordinate system in which their deriva-
tion is simple, and then use the tensor character of the involved objects to infer the validity of the
relation in general coordinates.

Both the Riemann tensor and covariant derivatives are particularly simple in locally geodesic
coordinates: n

RaklmIn

oLG 10.70
10.56
D �akm;l;n � �

a
kl;m;n : (10.110)

Adding up the cyclic permutations of this expression yields:n
RakhlmIni

oLG
D

n
RaklmIn

oLG
C

n
RakmnIl

oLG
C

n
RaknlIm

oLG
(10.111a)

D �akm;l;n � �
a
kl;m;n C �

a
kn;m;l � �

a
km;n;l C �

a
kl;n;m � �

a
kn;l;m

(10.111b)

D 0 (10.111c)

Now, sinceRa
khlmIni

is a tensor and vanishes in one coordinate system, it vanishes in all coordinate
systems (because tensor components transform linearly under coordinate transformations); thus
Ra

khlmIni
D 0 and we are done. �

Notes:

• Remember that commutators ŒA; B� D AB � BA satisfy the ↓ Jacobi identity:

ŒA; ŒB; C ��C ŒB; ŒC;A��C ŒC; ŒA;B�� D 0 : (10.112)

But the ← Ricci identity Eq. (10.71) relates the curvature tensor (not necessarily a Riemannian
one, but the connection must be torsion-free) to the commutator of covariant derivatives:

AkŒIlIm� D AaR
a
klm : (10.113)

Using this, one can derive the second (and also the first) Bianchi identity from the Jacobi
identity; seeNakahara [133] (p. 269).

14 | Derived tensors:

The following tensors can be derived from the Riemann tensor and will play an important role in
the formulation of general relativity:

i | The only non-trivial contraction of the Riemann tensor sums one index of the first pair with
one index of the second pair (all other contractions vanish due to symmetries):

⁂ Ricci tensor: Rkl WD R
a
kla D �R

a
kal (10.114)

ii | The Ricci tensor is symmetric:

Rkl D Rlk (10.115)
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To show this, contract the first Bianchi identity Eq. (10.108),

Rakla CR
a
lak CR

a
akl D 0 ; (10.116)

and useRa
akl
D 0 due to the antisymmetry of the Riemann tensor.

! InD D 4 dimensions, the Ricci tensor has 10 algebraically independent components.

iii | We can contract the Ricci tensor to obtain a curvature scalar:

⁂ Ricci scalar: R WD gabRab D R
a
a (10.117)

iv | ⁂ Contracted Bianchi identity:

Ricci tensor and -scalar obey an identity that derives from the second Bianchi identity:

RanIa D
1

2
RIn (10.118)

Proof. To show this, contract the differential Bianchi identity Eq. (10.109) over a andm:

RklIn �RknIl �R
a
k nlIa D 0 : (10.119)

Tracing out k and l (recall that our connection is metric-compatible, i.e., we are allowed to
pull indices up/down inside covariant derivatives) yields:

0 D gklRklIn � g
klRknIl � g

klR a
k nlIa (10.120a)

10.117
D RIn �R

l
nIl �R

la
nlIa (10.120b)

10.114
D RIn �R

l
nIl �R

a
nIa (10.120c)

D RIn � 2R
a
nIa : (10.120d)

�

v | As preparation for general relativity, we define another tensor using the Ricci tensor,
Ricci scalar, and metric:

⁂ Einstein tensor: Gij WD Rij �
1

2
gijR (10.121)

ForD D 4 on a Lorentzian manifold, this tensor will be used as the left-hand side of the
→ Einstein field equations.

vi | The form of Eq. (10.121) is structurally similar to the contracted Bianchi identity. Indeed,
Eq. (10.118) immediately implies:

Eq. (10.118) ) Gai Ia D 0 (10.122)

• Eq. (10.122) will be crucial for the consistency of the → Einstein field equations with
energy momentum conservation.

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



GR → MATHEMATICAL TOOLS II: CURVATURE

272
PAGE

• ForD D 4 one can show that the Einstein tensorG�� (besides the metric tensor g��)
is the only rank-2 tensor with vanishing (covariant) divergence that one can construct
from the metric and its first and second derivatives [134, 135]. This result is known
as ↑ Lovelock’s theorem and states under which conditions the field equations of gen-
eral relativity (including the cosmological constant) are unique (→ later). The
uniqueness of G�� and Lovelock’s theorem impose important constraints on possible
extensions (or modifications) of general relativity.

10.3.3. Geodesics

In Section 10.2 we defined“straight lines” as curves that keep their direction constant, and formalized
this notion as ← autoparallel curves. Now that we have a metric at hand, we can also define“straight lines”
as the shortest curves connecting two points. We will show now that these two concepts coincide for the
metric-compatible, torsion-free Levi-Civita connection induced by the metric:

15 | ^ Length of curve  connecting two points P2 and P2 [← Eq. (3.55)]:

LŒ� D

Z


ds D
Z �2

�1

d�
q
gij Pxi Pxj (10.123)

Here, xi .�1=2/ are the coordinates of P1=2 in some chart. The right expression is independent of
both the parametrization xi .�/ of the curve and the coordinate system.

To see the latter, recall that for a coordinate transformation Nx D '.x/ it is

d Nxi

d�
D
@ Nxi

@xm
dxm

d�
and Ngij D

@xk

@ Nxi
@xl

@ Nxj
gkl : (10.124)

Remember that the directional derivatives Pxi@i along a curve are vectors in the tangent space TpM
and transform accordingly. Thus, in the expression Eq. (10.123), the total derivative wrt. � is im-
portant! In contrast to the special coordinate transformations of special relativity (Lorentz
transformations), the coordinates xi themselves do not transform as tensors (they transform like
Nx D '.x/, which is non-linear in general).

16 | “Straight line” from P1 to P2 � Shortest curve � (⁂ Geodesics) from P1 to P2

¡! Strictly speaking, we will not study globally shortest curves, but curves that locally extremize the
length functional Eq. (10.123). For now, you can think of geodesics as “shortest curve” connecting
two points, but keep in mind that this is not necessarily true (→ comments below).

! Extremize length over curves starting at P1 and terminating at P2:

ıL D ı

Z P2

P1

ds Š
D 0 (10.125)
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17 | ^ Strictly monotonic, differentiable function � & Class of “Lagrangians”

L�.x; Px/ WD �
�
gkl.x/ Px

k
Pxl„ ƒ‚ …

DWy

�
(10.126)

For example: �.x/ D
p
x yields the integrand of Eq. (10.123) as Lagrangian.

!More general variation principle:

ı

Z P2

P1

d�L�.x; Px/ D 0 (10.127)

Depending on �, this “action” is no longer reparametrization invariant in general.

18 | ! Euler-Lagrange equations:

d
d�

�
@L�

@ Pxi

�
�
@L�

@xi
D 0 ,

d
d�

�
�0.y/2gik Px

k
�
� �0.y/

@gkl

@xi
Pxk Pxl D 0 (10.128)

19 | ^ Parametrization with y D gij .x/ Pxi Pxj � k Pxk2x
Š
D 1 D const

This choice fixes an affine parametrization � D s of the curve  where the “velocity” k Pxkx is
constant. Since we require k Pxkx D 1, the “time” � is equal to the length s of the curve from the
start to xi .�/ (up to a constant offset).

Later, on the (pseudo-Riemannian) Lorentzian manifolds of general relativity, we will also
consider space-like geodesics with y < 0; for such curves, you must add an additional minus in the
square root of Eq. (10.123) and choose y D �1 D const instead. The rest of the derivation is then
completely analogous.

! �0.y/ D const ¤ 0 (strict monotonic!) !

Eq. (10.128) , gik Rx
k
C gik;l Px

k
Pxl �

1

2
gkl;i Px

k
Pxl D 0 (10.129)

Note that this differential equation is independent of �!

Eq. (10.129) , gik Rx
k
C
1

2

�
gil;k C gik;l � gkl;i

�„ ƒ‚ …
�ikl

Pxk Pxl D 0 : (10.130)

20 | Identify Christoffel symbols Eq. (10.79)
ı
�!

d2xi

d�2
C � ikl

dxk

d�
dxl

d�
D 0 ⁂ Geodesic equation (10.131)

Solutions of this DGL are called ⁂ (affinely parametrized) Geodesics.

21 | Notes:

• ¡! We derived the Geodesic equation by a variational principle extremizing the length between
two points. This means that geodesics are not necessarily the shortest curves between two
points. Ignoring the peculiarities of pseudo-Riemannian metrics for now (→ Section 11.1),
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Geodesics are only locally the shortest connections between close by points, but not neces-
sarily globally. Put differently: Every shortest path connecting two points is a geodesic, but
not every geodesic connecting two points is a shortest path.

An example is a great circle on a sphere connecting two points (→ below), say the north pole
and a point on the equator. The great circle satisfies the geodesic equation everywhere, and
is therefore a geodesic. The shortest path connecting the two points is part of the great circle
(and therefore also a geodesic). But the “long way around” is certainly not the shortest path
(but still a geodesic, as it is also part of the great circle).

• With our derivation we showed that the curves (Geodesics) that solve the geodesic equation
Eq. (10.131) not only extremize the length Eq. (10.123), but themore general class of“actions”
defined by the “Lagrangian” Eq. (10.126). This will be useful → later when we study the
classical mechanics of points on the Lorentzian manifolds of general relativity.

• As already discussed previously (in Section 10.2.2), Eq. (10.131) is not invariant under
arbitrary but only affine reparametrizations � D a�C b. The geodesic equation therefore
not only picks out the locally shortest (more precisely: extremal) curves on the manifold, but
selects also a particular way to parametrize them (namely a parameter that is proportional to
the length of the curve, i.e., an affine parametrization).

• The geodesic equation is a second-order differential equation. As such it has a unique
solution xi .�/ for any point p of the manifold and tangent vector in vp D vip@i 2 TpM ; in
coordinates:

xi .0/ WD xip

Pxi .0/ WD vip

)
Eq. (10.131)
������! Geodesic xi .�/ through p in direction vp . (10.132)

This is reminiscent of classical mechanics where, given some potential V.Ex/, Newton’s law
determines a unqiue trajectory for every initial position Ex0 and initial velocity Ev0 of a test
particle by solving the second-order differential equation

mEx00
CrV.Ex/ D 0 : (10.133)

However, there is a subtle difference between Eq. (10.133) and Eq. (10.131):

Solutions of Newton’s equation of motion are not invariant under affine reparametrizations
in general. That is, if Ex.t/ is a solution of Eq. (10.133), the rescaled trajectory Ey.t/ WD Ex.˛t/
is no longer a solution (check this!). Note that the effect of the time rescaling ˛ is to scale the
initial velocity: Ey0.0/ D ˛ Ex0.0/ D ˛Ev0. Physically, this makes sense: If you throw a ball in
the same direction with different velocity, its trajectory will look different in a generic potential.

In conclusion, the solutions of Eq. (10.133) form a family of curves through every point, with
many different curves going off in the same direction:

Compare this to the geodesic Eq. (10.131):
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Given an (affinely parametrized) geodesic xi .�/, which shoots of from xi .0/ in direction
Pxi .0/ D vip, the reparametrized curve yi .�/ WD xi .˛�/ is again a solution (check this!).
This new curve has again a rescaled tangent vector at p (“initial velocity”), namely Pyi .0/ D
˛ Pxi .0/ D ˛vip . But the two curves xi .�/ and yi .�/ trace out the same curve on themanifold,
only with a different parametrization (“speed”).

The affine reparametrization symmetry of the geodesic equation therefore leads to a unique
geodesic shooting off in every direction vp 2 TpM at every point p 2 M . Rescaling vp
produces the same geodesic, only with a different parametrization (left sketch):

Note that geodesics emanating from a point can meet and cross each other at other points of
the manifold (this depends on the curvature, and therefore the metric).

An example is the sphere (right sketch); its geodesics are great circles. At every point of the
sphere there is a unique great circle for every direction. But two great circles shooting off
in different directions eventually cross again at the antipode of the point where the started
from.

• You may wonder: If we know all (unparametrized/projected) geodesics through all points
in all directions, do we then know the metric of the manifold? This question is actually
of physical significance in general relativity, where the geodesics of spacetime
correspond to the trajectories of free falling bodies (→ later). In the language of general
relativity, the question then asks whether one can reconstruct the metric of spacetime
by observing enough free falling bodies (asteroids, stars, etc.).

In its strictest sense, the answer to the question is negative. This is easy to see: Consider
R2 and equip this manifold with (1) the Euclidean metric ıij , and (2) the Minkowski metric
�ij . Since both metrics are constant, their Christoffel symbols vanish identically and the
solutions of the geodesic Eq. (10.131) are all straight lines for both metrics. On says that the
two metrics are ↑ geodesically equivalent.

However, in general it turns out that this is a quite subtle question to answer, see Ref. [136].
Note that one must carefully distinguish between unparametrized geodesics (you know only
the traces of geodesics on the manifold), and (affinely) parametrized geodesics (where you
know also the lengths along the traces). Despite the example above, it turns out that generic
metrics can be characterized by their geodesics (even unparametrized ones); i.e., two metrics
being geodesically equivalent is not the norm but the exception.

• Imagine you are given a Riemannian manifold and a machine that, input two nearby points
on the manifold, spits out the affinely parametrized geodesic through these points (i.e., a
curve with “distance ticks” on it). Using this device, you can reconstruct the Levi-Civita
connection on the manifold (i.e., you can use it to parallel transport tangent vectors) via a
geometric construction known as ↑ Schild’s ladder [↑Misner et al. [2] (§10.2, pp. 248–249)].

Fun fact: There is also a science fiction novel called Schild’s Ladder [137] by the Australian
mathematician andHugo Award winning authorGreg Egan. If you are a fan of hard, mind-
bending science fiction à la Lem, Asimov andHeinlein (and not afraid to encounter
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concepts from your physics courses in a work of fiction), you might give his novels a try.

• On a Riemannian manifold with a generic metric-compatible connection, that is not neces-
sarily the torsion-free Levi-Civita connection, the coefficients � i

kl
in Eq. (10.131) are still

the Christoffel symbols (which no longer equal the connection). So the geodesic equation
on such a manifold still reads (now with the alternative notation for Christoffel symbols to
distinguish them from the connection coefficients):

d2xi

d�2
C

�
i

kl

�
dxk

d�
dxl

d�
D 0 : (10.134)

This equation determines the“shortest lines” (geodesics) on the manifold.

By contrast, the“straightest lines” (autoparallels) are determined by the autoparallel equation
Eq. (10.60):

d2xi

d�2
C � ikl

dxk

d�
dxl

d�
10.81
D

d2xi

d�2
C

��
i

kl

�
�Kikl

�
dxk

d�
dxl

d�
D 0 : (10.135)

Here we used the general form of a metric-compatible connection Eq. (10.81) with the
← contorsion tensor Ki

kl
. Introducing the symmetric partKi

.kl/
$ 1

2
.S i
l k
C S i

k l
/ of the

contorsion tensor yields (for reference see e.g. [138])

d2xi

d�2
C

�
i

kl

�
dxk

d�
dxl

d�
D Ki.kl/

dxk

d�
dxl

d�
: (10.136)

The geodesic equation and the autoparallel equation are therefore equivalent if and only if
the symmetric partKi

.kl/
of the contorsion tensor vanishes (a sufficient, but not necessary,

condition is that the torsion S i
kl

vanishes).

In conclusion, knowing all the geodesics on a manifold only conveys information about the
symmetric part of the connection; the geodesics know nothing about torsion (but autoparallels
do, at least partially). Thus, for a generic metric-compatible connection, there is a difference
between“shortest lines” (geodesics) and“straightest lines” (autoparallels).

In general relativity, where we only use the torsion-free Levi-Civita connection, we
do not have to make this distinction, so that autoparallels and geodesics are the same.

• If the metric gij .x/ is independent of a coordinate xi , Eq. (10.128) implies for the allowed
choice �.x/ D x=2

pi WD gik Px
k
D const : (10.137)

This“constant of motion” corresponds to the ↓ cyclic variable xi and can be used to simplify
the solution of the geodesic equation.

22 | Geodesic deviation:

Details: → Problemset 3

i | ^ Continuous family of nearby (non-crossing) geodesics  is .t/:
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Define two vectors fields:

T i WD
@ is .t/

@t
(“Velocity”) and S i WD

@ is .t/

@s
(“Deviation”) : (10.138)

^ Relative acceleration of nearby geodesics:

Ai WD
D2S i

Dt2
10.49
D T n

�
TmS iIm

�
In
: (10.139)

The covariant accelerationAi measures whether two infinitesimally close geodesics“attract”
or “repel” each other.

ii | Using the ← geodesic equation and the ← Ricci identity, one finds:

Eqs. (10.71) and (10.131)!

D2S i

Dt2
$ RijklT

jT kS l ⁂ Geodesic deviation equation (10.140)

Proof: → Problemset 3

(Note that the geodesic equation can be written as T kT i
Ik
D 0.)

! Curvature makes parallel geodesics attract/repel each other!

iii | But this looks very much like gravity (more precisely: the tidal effects of gravity):

(Note that this sketch is a projection of geodesics from spacetime to space.)

! Reasonable approach to a geometric theory of gravity:

• Free-falling bodies follow geodesics in spacetime: → Chapter 11
• Masses create curvature of spacetime: → Chapter 12
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