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↓ Lecture 20 [07.05.24]

10.2.1. Covariant derivatives

10 | The definition Eq. (10.37) of the → absolute derivative did not require Ai .�/ to be defined in a
neighborhood of the curve 
.�/. However, if Ai .�/ � Ai .
.�// is defined on the whole manifold
(or at least in a neighborhood of the curve), we can define a more useful derivative:
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(10.49)

!⁂ Covariant derivative of a contravariant vector:
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m (10.50)

ı
�! Ai

Ik
is .1; 1/-tensor

Proof: Via the ← quotient theorem or by straightforward calculation using Eq. (10.39) (← Section 3.6).

11 | Covariant derivative of a scalar:

ˆIk WD ˆ;k (10.51)

ı
�! ˆIk is .0; 1/-tensor [Proof: Eq. (3.19)]

That the partial derivatives of scalar fields encode geometric objects, and there is no need to use
the additional structure of a connection, is a consequence of the fact that scalar fields map to R

and not TpM . Note that it makes sense to talk about a constant scalar field �.p/ D �.q/ for all
p; q 2M without referring to a particular coordinate system or specifying an additional structure!

12 | One demands that the ↓ Leibniz product rule is valid for covariant derivatives:

.AiBi /Ik
Š
D Ai

IkBi C A
iBi Ik (10.52)

! Covariant derivative of covariant vector:

Bi Ik WD Bi;k � �
m
ikBm (10.53)

Cf. Eq. (10.50): Different summation indices and different sign!
ı
�! B

i Ik
is .0; 2/-tensor
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Proof. First we note that

Ai
IkBi C A

iBi Ik
10.52
D .AiBi /Ik

10.51
D .AiBi /;k D A

i
;kBi C A

iBi ;k (10.54)

since AiBi is a scalar. With the definition Eq. (10.50) it follows

AiBi Ik $ Ai
�
Bi;k � �

m
ikBm

�
: (10.55)

Since this must be true for arbitrary Ai , Eq. (10.53) follows. �

13 | Covariant derivatives of higher-rank tensors:

The above structure can be generalized to tensors of arbitrary rank:

T ik:::rs::: Il WD T
ik:::

rs::: ;l C�
i
ml T

mk:::
rs::: C : : :„ ƒ‚ …

8upper indices

��mrl T
ik:::

ms::: � : : :„ ƒ‚ …
8lower indices

(10.56)

Example:

Covariant derivatives of rank-2 tensors:

T ik
Il D T

ik
;l C�

i
ml T

mk
C�kml T

im
! .2; 1/-tensor (10.57a)

TikIl D Tik;l � �
m
il Tmk � �

m
kl Tim ! .0; 3/-tensor (10.57b)

T ikIl D T
i
k;l C�

i
ml T

m
k � �

m
kl T

i
m ! .1; 2/-tensor (10.57c)

For a proof, see Schröder [3] (p. 53).

10.2.2. Parallel vector fields and autoparallel curves

14 | ^ Vector field A D Ai@i & curve 
 :

A is a ⁂ parallel (vector field) along 


W,
DAi

D�
D

dAi

d�
C � iklA

k dx
l

d�
Š
D 0 (10.58)

• Given a connection �, Eq. (10.58) is a first-order differential equation for Ai . By solving it
for a given initial value of Ai .� D 0/, one can reconstruct a parallel vector field on the curve

 .
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• For higher-rank tensors, one defines parallelism along a curve analogously:

DT ik:::mn:::
D�

Š
D 0 (10.59)

15 | ⁂ Autoparallel curve: Generalization of a straight line in RD :

Straight line: Curve that “keeps its direction constant.”

We cannot characterize a straight line as “the shortest curve between two points” because we do
not have a metric, only a connection!

^ Curve 
 with parametrization 
�.�/ (in some chart)


 is ⁂ autoparallel W, Tangent field A D Ai@i WD
d
 i

d� @i is ← parallel along 
 :

Eq. (10.58)
������!

d2
 i

d�2
C � ikl

d
k

d�
d
 l

d�
D 0 ) 
 is ⁂ autoparallel (10.60)

• ¡! If a parametrization of a curve satisfies theDGLEq. (10.60), the curve is autoparallel and the
given parametrization is called ⁂ affine. Since Eq. (10.60) is not reparametrization invariant
(→ below), there are other (non-affine) parametrizations of the same autoparallel curve that
do not satisfy Eq. (10.60). Every autoparallel curve has such an affine parametrization (which
is unique up to affine transformations).

• Once we have a metric and a compatible connection (→ Section 10.3), the autoparallel curves
will be identical to the curves of shortest length (→ geodesics).

• Let us assume that an affine parametrization of an autoparallel curve satisfies Eq. (10.60).
Now consider a reparametrization � D f .�/ given by some strictly monotone function f .

The new parametrization is then Q
 i .�/ D Q
 i .f .�// WD 
 i .�/ and satisfies the DGL

d2 Q
 i

d�2
C � ikl

d Q
k

d�
d Q
 l

d�
$ h.�/

d Q
 i

d�
with h.�/ D �

d2�

d�2

�
d�
d�

��2

: (10.61)

The definition of h is equivalent to the DGL

d2�

d�2
C h.�/

�
d�
d�

�2
D 0 : (10.62)
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If � is an affine parameter, the transformation f yields another affine parameter � if and only
if h.�/ � 0, i.e.,

d2�

d�2
D 0 ; (10.63)

which is solved by reparametrizations of the affine form � D f .�/ D a�C b. That is, affine
parametrizations are unique up to affine reparametrizations.

• This problem does not affect the definition of a parallel vector field because Eq. (10.58) is
reparametrization invariant.

10.2.3. The curvature tensor

Now that we have a formal concept of the parallel transport of vectors from one tangent space to another,
we can ask whether the result of such a transport depends only on the final destination, or whether the
path of the transport also plays a role. The answer will be that, for a generic connection, parallel transport
indeed is path dependent, and that this path dependence is a manifestation of the intrinsic curvature of
the manifold (more precisely: its connection).

16 | ^ Parallel transport of vector A D Ai@i from q to q0 via different paths 
1 and 
2:

! It is easier (and sufficient) to study an infinitesimal parallelogram.

17 | ^ Path p
p1
�! p0:

The first parallel transport along ıx1 yields:

Ai .p
ıx1
��! p1/

10.34
D Ai .p/C ı1A

i .p/„ ƒ‚ …
�Ai Cı1Ai

D Ai .p/ � � ikl .p/A
kıxl1 (10.64)

The subsequent parallel transport along ıx2 yields:

Ai .p
ıx1
��! p1

ıx2
��! p0/ D Ai .p

ıx1
��! p1/C ı2A

i .p
ıx1
��! p1/ (10.65a)

D Ai C ı1A
i
� � inm .p1/

�
An C ı1A

n
�
ıxm2 (10.65b)

Our goal is to express everything in the initial point p.!

� inm .p1/ � �
i
nm .p/C @l�

i
nm .p/ ıx

l
1 (10.66)
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(Since we consider an infinitesimal parallelogram, we only need linear variations of all quantities.)

With this expansion, we find for the parallel vector in p0:

Ai .p
ıx1
��! p1

ıx2
��! p0/ $ Ai �� iklA

kıxl1„ ƒ‚ …
ı1Ai .p/

�� inmA
nıxm2„ ƒ‚ …

ı2Ai .p/

C � inm�
n
klA

k ıxl1 ıx
m
2 � @l�

i
nmA

n ıxl1 ıx
m
2

C O
�
.ıx/3

�
(10.67)

In this expression, all connection coefficients and fields are evaluated in p!

18 | ^ Path p
p2
�! p0: Same expression with ıx1 $ ıx2:

Ai .p
ıx2
��! p2

ıx1
��! p0/ $ Ai �� iklA

kıxl2„ ƒ‚ …
ı2Ai .p/

�� inmA
nıxm1„ ƒ‚ …

ı1Ai .p/

C � inm�
n
klA

k ıxl2 ıx
m
1 � @l�

i
nmA

n ıxl2 ıx
m
1

C O
�
.ıx/3

�
(10.68)

19 | ! Path dependence:

�Ai WD Ai .p
ıx1
��! p1

ıx2
��! p0/ � Ai .p

ıx2
��! p2

ıx1
��! p0/

D

�
Change of Ai after parallel transport along
closed path p ! p1 ! p0

! p2 ! p.

�
Drop O

�
.ıx/3

�
terms.

� RiklmA
k ıxm1 ıx

l
2 (10.69)

with the ⁂ curvature tensor

Riklm $ @l�
i
km � @m�

i
kl C �

i
nl �

n
km � �

i
nm�

n
kl : (10.70)

Although � i
kl

is no tensor, this particular combination is a .1; 3/-tensor (Proof: → next).

20 | Covariant derivatives are defined by an infinitesimal parallel transport. As parallel transport is path
pendent, the subsequent application of two covariant derivatives in different directions cannot be
commutative. Indeed:

AkŒIlIm� � AkIlIm � AkImIl $ RiklmAi ⁂ Ricci identity (10.71)

! Covariant derivatives of tensors are not commutative (in general)!

[Eq. (10.71) is valid in this form only for torsion-free connections.]

AkIlIm is .0; 3/-tensor
← Quotient theorem
�����������! Ri

klm
is .1; 3/-tensor 3

• Alternatively, you can prove the tensorial transformation of Ri
klm

manually using the ex-
pression Eq. (10.70) and the transformation of the connection coefficients Eq. (10.39) and
partial derivatives Eq. (3.5).
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• Compare the non-commutativity of the covariant derivative of tensorswith the commutativity
of conventional partial derivatives:

AkŒ;l;m� � Ak;l;m � Ak;m;l D @m@lAk � @l@mAk D 0 : (10.72)

21 | Notes:

• The curvature tensor can be interpreted geometrically as follows:

Since curvature is the property that vectors parallel transported around infinitesimal loops
change their direction, one can encode all features of curvature in an object that tells you
how an arbitrary vector is transformed if transported around any infinitesimal parallelogram
in theml-plane. This object is the curvature tensor, and from this perspective it is clear that
it must be of rank four (two indices to specify the plane, two for the transformation of the
vector).

• (A manifold with) a connection is called flat iff the curvature tensor is identically zero
everywhere: Ri

klm
.p/ � 0. In particular, this means (for a torsion-free connection) that

in a neighborhood of every point on the manifold (and not just the point itself!) you can
find a coordinate system in which the connection coefficients vanish identically (i.e., these
neighborhoods behave like flat Euclidean space).

In summary, the following statements are equivalent:

– The curvature tensor vanishes identically.

– The manifold is flat.

– Parallel transport is path-independent.

– Covariant derivatives are commutative.

• Whether a space is curved or not is a property of its connection and not of its topology! For
example, here are two topologically equivalent (↑ homeomorphic) tori (“donuts”):
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The left one is defined by identifying opposite edges with each other and inherits the connec-
tion of the Euclidean plane. The right torus is embedded in 3D Euclidean space and inherits
the metric of R3 and its induced connection. Both spaces are topological tori, but the left
one is flat whereas the right one is not [as illustrated by the path(in)dependence of parallel
transport].

So if someone asks you whether a torus is flat or curved, the correct answer is that this is
an undefined question unless a particular connection is specified! (Interestingly, this is not
true for the two-dimensional sphere S2. While there are many connections you can assign
to a 2D sphere, none of them is flat! This is a corollary of the ↑ Gauss-Bonnet theorem or,
alternatively, the ↑ hairy ball theorem.)

10.3. Affine connections on Riemannian manifolds

Wealready know the benefits of aRiemannianmanifold .M; g/, i.e., amanifold equippedwith a (pseudo-)Rie-
mannian metric g. In the previous section, we studied another type of structure that lives on a manifold:
a connection � . In this section we bring both (a priori independent) concepts together by asking whether,
among all possible connections, there are distinguished ones on a Riemannian manifold. This will lead us
to a connection that can be constructed directly from the metric and plays a central role in general
relativity.

10.3.1. The Levi-Civita connection

1 | Motivation:

In Euclidean space, the parallel transport of two vectors does not change their inner product (in
particular, their norm/length remains constant):

! It makes sense to generalize this property to general Riemannian manifolds with a connection.

2 | ^ Riemannian manifold .M; g/ with (pseudo-)Riemannian metric gij .x/

A connection � is called a ⁂ metric-compatible

W,
d
d�
hA;Bi

def
D

d
d�
.gikA

iBk/
10.51
D

D
D�

.gikA
iBk/

Š
D 0

along any curve 
.�/ for all parallel vector fields A and B along 
 .

(10.73)

Recall that for a scalar the total and absolute derivative are identical.
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A and B parallel vector fields: DAi

D� D 0 D
DBk

D� !

Eq. (10.73) ,
Dgik
D�

Š
D 0 , 8i;k;l W gikIl

Š
D 0 (10.74)

Use the Leibniz product rule Eq. (10.52) to show this.

! gij .x/ is covariantly constant

3 |
Eq. (10.57b)
�������!

@lgik � �
m
il gmk � �

m
kl gim

Š
D 0 (10.75)

Since Eq. (10.74) holds for arbitrary indices, we also have equations with cyclic permutations:

@kgli � �
m
lkgmi � �

m
ikglm

Š
D 0 ; (10.76a)

�@igkl C �
m
ki gml C �

m
li gkm

Š
D 0 : (10.76b)

Adding up the three equations yields

�i.kl/ � �
m
.kl/gmi

Š
D
1

2
.@lgik C @kgli � @igkl /C

1

2

�
Smli gmk C S

m
ki gml

�
D
1

2
.@lgik C @kgli � @igkl /C S.kl/i (10.77)

with torsion Sm
li
D �m

li
� �m

il
and the symmetrized coefficient �m

.kl/
WD

1
2

�
�m

kl
C �m

lk

�
and torsion tensor S

.kl/i
WD

1
2

�
S
kli
C S

lki

�
.

If we assume a torsion-free connection, it is �i.kl/ D �ikl and S.kl/i D 0 so that

�ikl D
1

2
.@lgik C @kgli � @igkl / : (10.78)

These are the connection coefficients of the unique Levi-Civita connection.

4 | Use symmetry � i
kl
D � i

lk
(torsion-free!) and definition �ikl WD gim�

m
kl

Eqs. (10.75) and (10.76)
�������������!

⁂ Christoffel symbols
(of the first kind) �ikl $

1

2
.@lgik C @kgli � @igkl/

⁂ Christoffel symbols
(of the second kind) � ikl D

1

2
gim .@lgmk C @kgml � @mgkl/

(10.79a)

(10.79b)

¡! You cannot pull indices up/down inside partial derivatives because the metric itself depends on
the coordinates. For example: gim@lgmk ¤ @l .gimgmk/ D @lıik D 0.

This torsion-free, metric-compatible connection is unique and called the Levi-Civita connection:

Christoffel symbols � ikl = Connection coefficients of the ⁂ Levi-Civita connection

• In general relativity, we only work with the Levi-Civita connection; i.e., when we
use the symbols � i

kl
, we always refer to the Christoffel symbols Eq. (10.79) (and not to

generic coefficients of a [metric-compatible] connection, → below).
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• For a given metric, there are many compatible connections (→ next). However, if we demand
in addition that the connection is symmetric (= torsion-free), there is only one possible choice:
the Levi-Civita connection (↑ Fundamental theorem of Riemannian geometry).

• The Christoffel symbols are sometimes written as [131, 132]�
i

kl

�
D
1

2
gim .@lgmk C @kgml � @mgkl / : (10.80)

(Einstein used an“upside down” version of this notation in his original work on general
relativity, e.g., in Ref. [11].)

Then it follows from Eq. (10.77) that a general metric-compatible connection can be written
as

� ikl D �
i
.kl/ C �

i
Œkl� D

�
i

kl

�
C
1

2

�
S ikl � S

i
l k C S

i
kl

�„ ƒ‚ …
DW�Ki

kl

; (10.81)

with� i
Œkl�
D

1
2
S i
kl

; the tensorKi
kl

is known as ↑ contorsion tensor (“Verdrehungstensor”).

The torsion-free Levi-Civita connection is the special case where

� ikl D

�
i

kl

�
: (10.82)

Because we use only the torsion-free Levi-Civita connection in general relativity,
we don’t make use of this notation and only write � i

kl
.

5 | Interpretation:

For the special case of a 2D manifold embedded in 3D Euclidean space, the Levi-Civita connection
can be geometrically interpreted as follows:

¡! This illustration is based on an embedding of themanifold into an ambient Euclidean space (which
induces a metric on the manifold). Note, however, that the Levi-Civita connection is intrinsically
defined and does not require such an embedding.

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART


