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↓ Lecture 2 [24.10.23]

Assumptions:

• The rods and clocks are conceptual: they do not affect physical experiments.

• All rods and clocks are identical (when brought together, the rods have the same,
time-independent length and the clocks tick with the same rate).

• The lattice is “infinitely dense”: there is a clock at every point in space.

• Each clock is assigned a unique position label Ex and the reference frame label O.

For example, a unique position label Ex for a clock can be obtained by counting the rods in x-,
y- and ´-direction that one has to traverse to reach the clock from the origin. The originO
is, by definition, a “special” clock that is assigned the position label ExO D E0.

¡! Observers are not sitting at the origin, looking at their wristwatch, and observing the events
with binoculars! They are simply collecting and processing the data that is accumulated by the
contraption we call a reference frame.

Since we assume that (ideally) there is one clock at every point in space:

! For every observer O and every coincidence class E there is a unique event eO

E 3 eO D hClock with frame label O and position label Ex shows time ti (1.1a)

DW .t; Ex/O , ŒE�O D .t; Ex/ (1.1b)

for some position label Ex and clock reading t .

We refer to the event .t; Ex/O as the spacetime coordinates of E with respect to frame O. A different
observer O0 will use its own clocks and therefore other events (“coordinates”) .t 0; Ex0/O0 2 E to
refer toE.

In the real world, the↑ tracking detectors of particle colliders are reminiscent of this ideal setup: They
are comprised of 3D arrangements of semiconductor-based particle detectors that all report to a
central computer that then reconstructs the trajectories of scattering products from the combination
of all detection events.

3 | ⁂ Inertial (coordinate) systems:

The setup of a reference frame O above is incomplete and actually very hard to work with: Without
additional constraints on the geometry of the lattice and the correlations of clocks (their “calibra-
tion”), the record of events is essentially arbitrary. Let us therefore impose some deterministic
“calibration procedure” (the same for all frames) that determines how to lay out the rod lattice
and how to synchronize the clocks. This procedure endows our reference frame with a specific
coordinate system, a labeling scheme to describe events.

i | Clock calibration: ⁂ (Poincaré-)Einstein synchronization ES

The conventional synchronization procedure (which is actually in practical use) is
(Poincaré-)Einstein synchronization:

tO
‹
D

1
2

�
tA C QtA

�
(1.2)
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You will study this particular procedure and its properties in → Problemset 1.

In brief, the procedure goes as follows: Consider a reference clockO and some other clock
A you wish to synchronize withO .

(1) To do so, you send a light signal from A toO and note the time tA your clock A reads
when the signal is emitted.

(2) When the signal arrives atO, it is immediately reflected back to A together with the
reading tO of clockO at this very moment.

(3) When the signal arrives back at your clock A (together with the timestamp tO), you
note again the reading of your clock as QtA.

(4) You are now in the possession of three timestamps: .tA; tO ; QtA/. The idea of Einstein
synchronization is to postulate the reciprocity of the speed of light: We declare that the
speed of the signal from A toO is the same as on its way back fromO to A (note that
we cannot measure this reciprocity because we would need already synchronized clocks
to do so!). Under this assumption, the readings of synchronized clocks must satisfy [9]

�tA!O � tO � tA
Š
D QtA � tO � �tO!A , tO

Š
D

1
2
.tA C QtA/ ; (1.3)

which you can locally check with your data .tA; tO ; QtA/. Note that you do not need to
know the distance fromO to A, nor the numerical value of the speed of light c for this
procedure to work!

(5) Now if you just powered on your shiny new clock A for the first time, it is very unlikely
that the condition Eq. (1.3) will be satisfied:

tO D
1
2
.tA C QtA/C ıt D

1
2
Œ.tA C ıt/C .QtA C ıt/� : (1.4)

Here ıt is an offset that you might encounter. But then you can just recalibrate your
clock A by ıt such that the new readings are tA C ıt and QtA C ıt .

Repeating this procedure for all clocks of the frame O allows you to establish a synchroniza-
tion relation between arbitrary pairs of clocks. The fact that (under some reasonable and
experimentally verified assumptions) the order in which you synchronize your clocks does
not matter (the established relation is an equivalence relation, → Problemset 1 and Ref. [21])
makes Einstein synchronization a very useful and peculiar convention [22–24]. However,
one can show that it is the only convention that yields a non-trivial equivalence relation of
simultaneity that is consistent with the causal structure on E (→ later) [25].

ii | Lattice calibration: ⁂ Orthonormal Cartesian coordinates OC :

The layout of the lattice of rods assigns coordinates Ex D .x; y; ´/ to each clock. Depending
on the actual shape of the lattice, we will denote events by different position labels. (Note
that even with rigid rods connected in the topology of a cubic lattice the geometry is not fixed;
for example, you can shear the lattice.) If we assume that space (not spacetime!) is a flat
Euclidean space where all the facts of Euclidean geometry hold good (angles of triangles add
up � , the Pythagorean theorem holds, the area of circles is �r2, etc.), we can parametrize it
without loss of generality by orthonormal Cartesian coordinates. In these coordinates, distances
can be calculated by the Pythagorean formula:
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Spatial distance between clocks at Ex and Ey:

d.Ex; Ey/„ ƒ‚ …
“Physics”

D

q
.x1 � y1/2 C .x2 � y2/2 C .x3 � y3/2„ ƒ‚ …

“Mathematics”

(1.5)

The fact that the coordinates of a point .x; y; ´/ are distances along paths parallel to the
coordinate axes makes the coordinates Cartesian. The fact that Eq. (1.5) holds makes them
orthonormal (i.e., the axes are orthogonal and have the same scale, as suggested by the sketch
above). Coordinates are an intrinsically mathematical concept, they are “labels” to identify
points on a manifold of physical points (or events, if you consider spacetime coordinates). By
contrast, distances carry physical significance: You can measure them with light signals or
rods. The prevalence of Cartesian coordinates makes it easy to conflate these two concepts
(this will become particularly important in general relativity).

Here is a way to check whether your lattice satisfies the OC condition using the clocks of O

(and the assumption of the isotropy of the two-way speed of light):

iii | “Inertial Test” (⁂ law of inertia):

Once you have arranged your rods and synchronized your clocks and thereby established a
Cartesian coordinate system and a (allegedly) well-defined notion of simultaneity, you can
perform the following test and check whether your particular reference frame O passes it or
not:

IN Free particles move at constant velocity and in straight lines.
(⁂ Homogeneity of Inertia)

• It is implied that this statement is true everywhere, anytime, and in all directions.

• Velocities are computed as the time derivative of trajectories in the frame: dEx.t/
dt .

• The property IN implies a certain form of homogeneity in space and time (since free
particles must move in straight lines anywhere and anytime) and isotropy in space (they
must move in straight lines in any direction). Without additional empirical input, this
does not automatically imply that every experiment yields the same result anywhere,
anytime and in any direction. This more general form of homogeneity and isotropy will
be introduced later as HO and IS . Empirical evidence shows that spacetime indeed is
homogeneous HO and space isotropic IS (in the absence of gravity). With this additional
input, the“Inertial Test” to establish IN can be simplified to only one particlemoving in
a straight line at one place for somefinite time (which is actually doable). If you presupose
homogeneity HO but not isotropy IS , you could observe multiple free particles starting
at the same point but moving in different (linearly independent) directions.

Frames equipped with a coordinate system defined by ES + OC

which satisfy IN are called ⁂ inertial coordinate systems.
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To distinguish arbitrary frames O (with arbitrary coordinates) from the special frames
(equipped with Cartesian coordinates and synchronized clocks) that passed the inertial
test, we label these coordinate systems byK, K 0, K 00 etc. (if we refer to arbitrary inertial
systems) and by A, B, C etc. (if we refer to specific inertial systems); the set of all inertial
systems is denoted I.

Alternative definitions:

There seem to be as many definitions of inertial systems as there are texts on special
relativity. Some are equivalent, some are not. Some more useful, others less so (none
are “wrong”, though, because definitions cannot be wrong). Some are operational in nature
(like the one above), some purely mathematical. Here I only want to point out two ways one
can modify the above definition without changing the concept of an inertial system:

• The“inertial test” is crucial to the concept of an inertial frame. It rules out accelerated
frames (both linear or rotating). An alternative to throwing test masses in different
directions and recording their trajectories is to repeat the ES procedure periodically
to test whether the clocks stay in sync. That is, to setup the coordinate system one
synchronizes the clocks once (by recalibrating the clocks) and then repeats the procedure
periodically to check whether the Einstein-synchronization condition remains valid
(ıt D 0 in our description above). As it will turn out in general relativity,
your clocks will not stay in sync in frames that do not pass IN (and vice versa). This is
essentially the definition given by Schutz [4].

• Instead of “hiding” the law of inertia in the synchronization of clocks, one can do a
somewhat reverse modification and“hide” the synchronization of clocks in (an exten-
sion of ) the law of inertia. To this end one extends the “inertial test” by a second class
of tests/experiments, namely:

IN* Two identical particles that are initially adjacent and at rest, and then interact to
repel each other, fly apart with the same velocity in opposite directions. (⁂ Isotropy
of Inertia)

This statement about the isotropy of inertia implies an operational definition of simul-
taneity that is (empirically) equivalent to ES : You synchronize your clocks such that IN*

is satisfied, for example by performing the experiment described by IN* equidistant
between two clocks. When the particles reach the clocks, you reset both to t D 0.
In this synchronization IN* is satisfied by construction; experiments show that clocks
synchronized in this way are also synchronized according to ES (and vice versa).

4 | ⁂ Spacetime diagram

WD Data structure that encodes the collected data of an inertial coordinate system K:

• Often we draw only one dimension of space for the sake of simplicity.
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• Because it will prove useful later, we measure time in units of length by multiplying t with
the speed of light c. The choice of c is arbitrary at this point.

Notation: ^ Two inertial systems K and K 0:

We use the following shorthand notations to refer to the coordinates of events in the spacetime
diagrams ofK andK 0, respectively:

.t; Ex/K � .x/K � x � .t; Ex/ and .t 0; Ex0/K0 �
�
x0
�
K0 � x

0
� .t 0; Ex0/ (1.6)

When it is clear to which inertial system the coordinates belong we drop the subscriptsK andK 0.

↓ Interlude: Reconstructing spacetime diagrams from E

If you are given the set E of events you can reconstruct the spacetime diagram of an inertial system
K by looking in each coincidence class E 2 E for the clock event .t; Ex/K 2 E. You then place E
(or some sub-event you are interested in) graphically at the coordinate .t; Ex/ on a sheet of paper. The
resulting picture is the spacetime diagram ofK. In a another inertial systemK0 the events are arranged
differently because different clock events .t 0; Ex0/K0 2 E and hence coordinates .t 0; Ex0/ are used to draw
the spacetime diagram. How .t; Ex/ and .t 0; Ex0/ are related is unclear at this point.

5 | Empirical facts:

The following facts cannot be bootstrapped from logical thinking alone. They are facts about our
physical reality that we have strong experimental evidence for.

• Inertial systems exist (at least in some approximation).

Examples would be an unaccelerated spaceship floating far away from the solar system or the
interior of the international space station (if you do not measure too precisely). In special
relativity we assume that these systems can be extended to encompass all of spacetime.

• Constructing inertial systems (of arbitrary size) is not possible everywhere.

! general relativity

We will find in our discussion of general relativity that in a gravitational field the
construction of inertial systems is only possible locally. For example: If you extend the ISS
inertial system rigidly beyond the ISS itself, at some point you will find the trajectories of
free particles to deviate from straight lines due to the inhomogeneity of the gravitational
field. We will also see that the synchronization procedure used to calibrate the clocks fails in
gravitational fields (you cannot keep your clocks in sync). For our discussion of special
relativity we ignore this and assume that our inertial systems cover all of spacetime.

6 | Relations between inertial systems:

i | There are three straightforward ways to construct a new inertial systemK 0 from a given one
K. They have in common that the two observers do not move with respect to one another so
that pairs of clocks fromK andK 0 spatially coincide for all times (this implies in particular
that you can check that these pairs of clock run at the same rate):

(1) Translation in time by s 2 R (! 1 parameter)

Procedure:
Duplicate all clocks & rods in place. Label the new clocks withK 0 and the old position
labels. Shift the reading of all clocks by a constant value �s:

.t 0; Ex0/K0 � .t; Ex/K with t 0 D t � s and Ex0
D Ex : (1.7)
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It is easy to see that this modification does not invalidate ES , OC or IN . In particular,
the Einstein synchronization condition Eq. (1.2) remains valid:

tO D
1
2

�
tA C QtA

�
, .tO � s/ D

1
2

�
.tA � s/C .QtA � s/

�
: (1.8)

How to check fromK:
At .t/K D 0 the reading of the origin clock ofK 0 is shifted by �s 2 R.

(2) Translation in space by Eb 2 R3 (! 3 parameters)

Procedure:
Duplicate all clocks & rods and translate the whole lattice by Eb (since all clocks are
type-identical, you can also simply modify the position labels without moving anything).
Label the new clocks withK 0 and keep their synchronization:

.t 0; Ex0/K0 � .t; Ex/K with t 0 D t and Ex0
D Ex � Eb : (1.9)

¡! If you move the lattice K 0 in direction Eb, the origin clock of K with position label
Ex D E0 will spatially coincide with a clock of K 0 with position label translated in the
opposite direction, namely�Eb. The same happens for rotations (→ below) and translations
in time (← above).

It is easy to see that this modification does not invalidate ES , OC or IN . In particular,
distances can still be computed with Eq. (1.5) since

d.Ex; Ey/ D d.Ex � Eb; Ey � Eb/ for Eb 2 R3 : (1.10)

How to check fromK:
At .t/K D 0 the origin ofK 0 is translated by Eb 2 R3 wrt. the origin ofK.

(3) Rotation in space by R 2 SO.3/ (! 3 parameters)

Procedure:
Duplicate all clocks & rods and rotate the whole lattice by the axis and angle defined by
the rotation matrixR (since all clocks are type-identical, you can again simply modify
the position labels without moving anything). Label the new clocks withK 0 and keep
their synchronization:

.t 0; Ex0/K0 � .t; Ex/K with t 0 D t and Ex0
D R�1

Ex : (1.11)

It is easy to see that this modification does not invalidate ES , OC or IN . In particular,
distances can still be computed with Eq. (1.5) since

d.Ex; Ey/ D d.R�1
Ex;R�1

Ey/ for R�1
2 SO.3/ : (1.12)

How to check fromK:
The spatial axes ofK 0 are rotated byR 2 SO.3/ wrt. the spatial axes ofK.

¡! You can add spatial reflections to these transformations (↓ improper rotations), i.e.,
R 2 O.3/ instead of R 2 SO.3/. In our discussions we will omit these and only
comment on them where necessary.

The combination of spatial rotations (proper and improper, i.e., including reflections) and
spatial translations form the ↑ Euclidean group E.3/ D ISO.3/.

However, experiments (and everyday experience) tell us that there is a fourth possibility how
two inertial systems can be related:

Empirical fact:
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(4) Uniform linear motion (⁂ Boost) by Ev 2 R3 (! 3 parameters)

You experience this fact whenever you have a very smooth flight: If you don’t look
out the window (and cover your ears) everything behaves just as if the airplane were
standing still on the ground; there is no evidence that you move with several hundred
kilometers per hour relative to the ground.

How to check fromK:
The origin ofK 0 moves with constant velocity

�
Ev
�
K
D

�
dx.t/
dt

�
K
2 R3.

Note that just from this observation one cannot distinguish between a pure boost and
a boost combined with a spatial rotation of the axes (because one probes only for the
trajectory of a single point). We will → later be more precise about this distinction.

¡! We cannot write down the coordinate transformations for this relation (yet). The
fundamental difference to (1)-(3) is that now the clocks ofK 0 move wrt. the clocks of
K. We cannot interpret this as a simple relabeling of fixed clocks. We cannot even be
sure that theK- andK 0-clocks “run at the same rate” (even if they are type-identical)
because to check this we would have to compare the reading of a pair of clocks (one in
K and one inK 0) at two consecutive points in time. To do this, however, the two clocks
must be at the same place (remember that we can only observe coincidences!). But this
is not possible: Since the two frames move uniformly, two clocks can never meet twice!
As it will turn out, it is this relation (4) [and its concatenations with (1)-(3)] that harbors
the essence of special relativity.

ii | Empirical fact: The relations (1)-(4) are exhaustive.

With this we mean that whenever you encounter two inertial systemsK andK 0 (i.e., both
observers certify that they satisfy our definition of an inertial system, in particular, the
“Inertial Test” IN ), then you will find that the relation between the two is one of the four
relations (1)-(4) or a combination of them.

! The relation of two inertial systems K and K 0 is given by 10 parameters:

Note that all these relations can be operationally defined and measured within the frameK.

¡! The first three sketches can be taken at face value: For example, a translation in time really
corresponds to the situation where all clocks are shifted by s an all spatial labels (in particular
the axes) remain unaffected. However, for the boost (the last sketch on the right) we do not
know (yet) how the coordinates transform (neither time nor space) except that the origin
clock ofK 0 follows a trajectory inK with uniform velocity Ev. This implies that you should
not take the sketch for a boost at face value: For example, we do not know whether the axes
remain parallel as suggested by the sketch (spoiler: in general they will not).

iii | Since the transformations (1)-(3) do not change the state of motion of the observer (and
can therefore be interpreted as a simple relabeling of the position labels and clock readings),
it makes sense to collect all inertial frames K that can be connected in this way into an
equivalence class ŒK� which we call…
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⁂ Inertial frame := Equivalence class ŒK� of all inertial coordinate systemsK related
by spacetime translations and spatial rotations.

Inertial frames ŒK� therefore correspond to the physical notion of a “state of motion.” Physi-
cally, an inertial frame corresponds to the class of all freely moving particles in the universe
that aremutually at rest. Given such a“state of motion” (e.g., by declaring one of the particles
as reference point), you can then construct various Cartesian coordinate systems (e.g., using
said reference particle as your origin) to describe events; these are the inertial systems that
make up the equivalence class ŒK�.

iv | Notation:

We denote these relations between two inertial systems with the following shorthand nota-
tions:

K
R;Ev;s;Eb
�����! K 0; K

R;Ev
��! K 0; K

Ev
�! K 0; K

vx
�! K 0 (1.13)

From left to right the relations become increasingly specialized.

¡! These relations are not symmetric (as indicated by the arrow). For example, K
vx
�! K 0

specifies the situation where the (origin of ) systemK 0 moves with velocity vx in x-direction
as measured in systemK.

v | Coordinate transformations:

^ Two descriptions of the same events:

! Transformation between these descriptions?

'.K ! K 0/ W .t; Ex/K 7! .t 0; Ex0/K0 ⁂ Coordinate transformation

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



SR → CONCEPTUAL FOUNDATIONS

28
PAGE

Finding the functional form of ' (for the non-trivial case Ev ¤ 0) will be our main goal and
central result of this chapter. However, before we can tackle this problem, we first have to
introduce a few more concepts.

↓ Interlude: Relative information

Wecalled the data inE absolute because all observers agree on the coincidence of events. However,
this data cannot include arbitrary statements, e.g., the event “the particle has velocity Ev” cannot
be part of E because we know from experience that different observers in general do not agree on
the velocity of an object. However, following Einstein, we postulated that coincidences are all we
can ever observe; thus all there is to know must be encoded in E! How is this consistent with the
fact that velocities (for example) cannot show up in E?

To understand this, it is instructive to think about quantities that can be derived from the absolute
data in E by means of prescribed algorithms. An algorithm A is simply a program using data from
E to compute other data (it can use potentially multiple eventsE1; E2; : : : ; EN 2 E to do so).
Furthermore, we allow the algorithm to take the label of an inertial systemK 2 I as input:

A W EN � I ! Output data (1.14)

As a constraint, we require that the algorithm must not use any (static) labels A;B; : : : 2 I of
inertial systems. The only reference to a frame it can use is the variable K. This somewhat
arbitrary sounding restriction formalizes the notion that there are no inertial systems that are
“special”. Since all inertial systems must be treated equal, the algorithm cannot refer to any
specific frame. (This → principle of relativity will take the center stage later and turns out to be
crucial for the derivation of the transformation '.)

Let us now contrive two algorithms to compute two quantities that are clearly physically relevant
but are not contained in E :

• Example 1: Velocity

First think about how you would measure the velocity of a particle in the lab: You would
detect the particle at two different (but nearby) locations, measure the time it requires to
get from one to the other, and then compute the difference quotient of distance traveled by
the time needed. Note that there is no way to measure the velocity at one point in space
and time; you always need two points!

To formalize this, consider two eventsE1 andE2 that both contain the sub-event“particle
detected”. The algorithm V.E1; E2IK/ computes the (average) velocity between the two
events as follows:

1. Select the event .t1; Ex1/K 2 E1.

2. Select the event .t2; Ex2/K 2 E2.

3. Compute and return the value Ev D Ex2�Ex1
t2�t1

.

It is important that this algorithm can be used without modifications by all observersK 2 I.
To do so, each observerK plugs into V the two events (which are objective) an its own label
K (since this is the only non-random choice possible).

But then two different observersK andK0 will pick different coordinates .ti ; Exi / (measured
by different clocks) to compute their value of Ev, which obviously can yield different outcomes
(as expected for velocities). Note that for the velocities to be really different it must be
ŒK0� ¤ ŒK�, i.e., the two inertial systems must belong to different frames.

• Example 2: Duration & Simultaneity

A very natural question is how much time passed between two events E1 and E2. The
formal prescription how to answer this question is given by the algorithm T .E1; E2IK/:

1. Select the event .t1; Ex1/K 2 E1.

2. Select the event .t2; Ex2/K 2 E2.
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3. Compute and return the value �t D t2 � t1.

For the very same reason as for the velocity algorithm above, the return value of course
will depend on the chosen“clock events” .ti ; Exi /. And so for the very same reason that
velocities can be observer-dependent, time intervals can be as well. Since we define“simul-
taneity” as the property�t D 0, this possibility for observer-dependent results directly
transfers to our notion of simultaneity!

Note that we did not make quantitative statements about the outcomes for different observers.
We neither showed how velocities depend on the frame nor whether simultaneity really is relative.
(It could just be the case that in our world t2 � t1 always equals t 02 � t

0
1 for a fixed event.) This

depends on the actual numbers of the coordinates. Such statements therefore require quantitative
statements about the relation of .t; Ex/K 2 E and .t 0; Ex0/K0 2 E, which we do not know at this
point (this is exactly the question for the functional form of the coordinate transformation ').

However, what we did show is the possibility that simultaneity is relative, just as we already expect
velocities to be! So when we later find the correct transformation ' and (surprise!) that indeed
simultaneity is not an observer independent fact, you should not be surprised.

Question: Can the values of the electric and magnetic fields EE and EB be included in E? If not,
can you think of an algorithm that determines the electric and magnetic fields EE and EB using
only coincidence data available in E? Do you expect the electromagnetic field to be observer-
dependent?

7 | Henceforth:

Unless noted otherwise, all frames will be inertial (with Cartesian coordinates).

!We will (almost exclusively) work with inertial coordinate systems.

We use the concept of inertial systems because to describe physics by equations, coordinates are a
useful tool. As it turns out, Cartesian coordinates allow for particularly simple equations (at least if
space is Euclidean). So our concept of inertial systems as defined above is the most useful one.

8 | Physical Models:

Let us fix a bit of terminology:

• ⁂ (Physical) laws are ontic features of reality (↑ scientific realism).

Physical laws can only be discovered; they can neither be invented nor modified.

• ⁂ (Physical) models are algorithms used to describe reality.
These algorithms are typically encoded in the language of mathematics.

Physical models are invented and can be modified; I will use the terms model and theory
interchangeably.

¡! These definitions are by no means conventional and you will find many variations in the literature.
For the following discussion, it is only important that the terms we use have precise meaning.
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¡! The validity of models cannot be proven; we can only gradually increase our trust in a model by
repeated observations (experiments) – or reject it as invalid by demonstrating that its predictions
contradict reality (↑ Karl Popper). Note that models might describe reality only approximately and
in specific parameter regimes and still be useful.

You may dismiss this focus on terminology as “philosophical banter.” Conceptual clarity, however,
is absolutely crucial for science – in particular for relativity. Whenever there is confusion in
physics, it is often rooted in the conceptual fuzziness of our thinking.

1.2. Galilei’s principle of relativity

9 | Example: Newtonian mechanics

i | Definition of the model:

• ^ Closed system of N massive particles with masses mi and positions Exi .

• ^ Force exerted by k on i :

Fk!i .Exk � Exi / D .Exk � Exi /fk$i .jExk � Exi j/ (1.15)

It is fk$i D fi$k and therefore Fk!i .Exk � Exi / D �Fi!k.Exi � Exk/.

! Newtonian equations of motion (in some inertial systemK):

mi
d2 EXi
dt2

D

X
k¤i

EFk!i . EXk � EXi / (1.16)

We denote with EXi � EXi .t/ coordinate-valued functions; i.e., Exi D EXi .t/ determines a
spatial point Exi for given t .

Remember: This model fully implements “Newton’s laws of motion”:

1. Lex prima:

A body remains at rest, or in motion at a constant speed in a straight line, unless
acted upon by a force.

This is the ↓ principle of inertia. It is part of the definition of the concept of a Newtonian
force used in Eq. (1.16). Note that it is not a consequence of Eq. (1.16) for Fk!i � 0. It
rather defines (together with the lex tertia below) the frames and coordinate systems
(← inertial systems) in which Eq. (1.16) is valid (recall IN ).
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2. Lex secunda:

When a body is acted upon by a net force, the body’s acceleration multiplied by its
mass is equal to the net force.

This is just the functional form of Eq. (1.16) in words.

3. Lex tertia:

If two bodies exert forces on each other, these forces have the same magnitude but
opposite directions.

This is guaranteed by the property Fk!i D �Fi!k of the forces. Together with the
lex secunda this is an expression of momentum conservation. For two particles:

m1
dv1
dt
Cm2

dv2
dt
D

dp1
dt
C

dp2
dt
D F2!1 C F1!2 D 0 (1.17)

This implies in particular that two identical particles (m1 D m2) that are both at rest at
t D 0must obey v1.t/ D �v2.t/ for all times (recall IN* ).

ii | Application of the model:

As a working hypothesis, let us assume that the model Eq. (1.16) describes the dynamics of
massive particles perfectly (from experience we know that there are at least regimes where it
is good enough for all practical purposes).

iii | Symmetries of Newtonian mechanics:

To understand the solution space of Eq. (1.16) better, it is instructive to study transformations
that map solutions to other solutions.

a | ⁂ Galilei transformations:

We define the following coordinate transformation:

G W R4 ! R4 W

(
t 0 D t C s

Ex0
D REx C Evt C Eb

(1.18)

A Galilei transformationG is characterized by 10 real parameters:

• s 2 R: Time translation (1 parameter)

• Eb 2 R3: Space translation (3 parameters)

• Ev 2 R3: Boost (3 parameters)

• R 2 SO.3/: Spatial rotation (3 parameters; rotation axis: 2, rotation angle: 1)
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The set of all transformations forms (the matrix representation of ) a group:

G
"

C
D fG.R; Ev; s; Eb/g ⁂ Proper orthochronous Galilei group (1.19)

with group multiplication

G3 D G1 �G2 D G.R1R2„ƒ‚…
R3

; R1Ev2 C Ev1„ ƒ‚ …
v3

; s1 C s2„ ƒ‚ …
s3

; R1 Eb2 C Ev1s2 C Eb1„ ƒ‚ …
Eb3

/ (1.20)

You derive this multiplication in → Problemset 1 and show that the group axioms are
indeed satisfied.

As a special case, themultiplication yields the rule for addition of velocities inNewtonian
mechanics:

G.1; Ev1; 0; E0/ �G.1; Ev2; 0; E0/ D G.1; Ev1 C Ev2„ ƒ‚ …
Ev3

; 0; E0/ (1.21)

The full Galilei group is generated by the proper orthochronous transformations together
with space and time inversion:

G D hG
"

C
[ fP; T gi ⁂ Galilei group (1.22a)

P W .t; Ex/ 7! .t;�Ex/ Space inversion (parity) (1.22b)

T W .t; Ex/ 7! .�t; Ex/ Time inversion (1.22c)

b | Galilei covariance & Form-invariance:

Details: → Problemset 1

^ Coordinate transformation Eq. (1.18)

We express the total differential and the trajectory in the new coordinates:

d
dt
D

dt 0

dt
d
dt 0
D

d
dt 0

(1.23)

and

EX 0
i .t

0/ D R EXi .t/C Evt C Eb D R EXi .t
0
� s/C Ev.t 0 � s/C Eb (1.24a)

, EXi .t/ D R
�1
h
EX 0
i .t

0/ � Ev.t 0 � s/ � Eb
i

(1.24b)

Thus the left-hand side of the Newtonian equation of motion Eq. (1.16) reads in new
coordinates:

mi
d2 EXi .t/

dt2
D mi

d2

dt 02
R�1

h
EX 0
i .t

0/ � Ev.t 0 � s/ � Eb
i
D R�1mi

d2 EX 0
i .t

0/

dt 02
(1.25)

Note that the quantitymi d2

dt2
EXi .t/ is not invariant; it transforms with anR�1 2 SO.3/.

And the right-hand side:X
k¤i

EFk!i . EXk.t/ � EXi .t// D R
�1
X
k¤i

EFk!i . EX
0
k.t

0/ � EX 0
i .t

0// (1.26a)

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



SR → CONCEPTUAL FOUNDATIONS

33
PAGE

Here we used the form of the force Eq. (1.15), that EXk.t/ � EXi .t/ D R�1Œ EX 0
k
.t 0/ �

EX 0
i .t

0/� and j EXk.t/ � EXi .t/j D j EX 0
k
.t 0/ � EX 0

i .t
0/j because of R 2 SO.3/.

Note that the force on the right-hand side is not invariant either; luckily, it transforms
with the same R�1 2 SO.3/; it “co-varies” with the left-hand side!

In conclusion, Newton’s equation of motion Eq. (1.16) reads in the new coordinates:

R�1mi
d2X 0

i .t
0/

dt 02
D R�1

X
k¤i

EFk!i . EX
0
k.t

0/ � EX 0
i .t

0//„ ƒ‚ …
! Covariance

(1.27a)

�R
, mi

d2X 0
i .t

0/

dt 02
D

X
k¤i

EFk!i . EX
0
k.t

0/ � EX 0
i .t

0//„ ƒ‚ …
! Form-invariance

(1.27b)

(You can easily check that this holds for P and T as well.)

!

Newton’s EOMs Eq. (1.16) are form-invariant under Galilei transformations.

Or: Newton’s EOMs Eq. (1.16) are Galilei-covariant.

↓ Interlude: Nomenclature

LetX be some group of coordinate transformations (here: X D G the Galilei group).

• A quantity is calledX -invariant if it does not change under the coordinate transfor-
mation. Such quantities are calledX -scalars.

An example is the massm in Eq. (1.16) (which is also constant).

• A quantity is calledX -covariant if it transforms under some given representation of
theX -group. If this representation is the trivial one (i.e., the quantity does not change
at all) this particularX -covariant quantity is then also anX -scalar.

An example of a Galilei-covariant (but not invariant) quantity is the force EFk!i which
transforms under a representation of G .

• An equation is called X -covariant if the quantity on the left-hand side and on the
right-hand side areX -covariant (under the sameX -representation).

An example is Newton’s lex secunda Eq. (1.16) wheremi d2

dt2
xi .t/ transforms in the

same (non-trivial) representation as EFk!i .

• X -covariant equations have the feature that a X -transformation leaves them form-
invariant, i.e., they“look the same” afterX -transformations because their left- and
right-hand side vary in the same way (they“co-vary”). Note that the quantities in a
form-invariant equation do not have to be invariant.

An example is again Eq. (1.16) as we just showed. Note that Ex0
i .t

0/ and Exi .t/ are
different vectors such that the two sides of the equation as not invariant (but covariant).
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