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↓ Lecture 15 [06.02.24]

6 | Coupling to a static EM field:

The KGE can be coupled to the gauge field of electrodynamics. This is necessary to described
charged particles (in particular: the hydrogen atom). Note that in the following the gauge field is a
parameter and not a dynamic degree of freedom.

i | Goal: Construct Lagrangian density that is…

• … a Lorentz scalar.

• … quadratic in �.

• … gauge invariant under the gauge transformation A0
� D A� � @��.

• … couples � and A� in a non-trivial way.

Without additional tools, this is a tough job!

ii | ^ Gauge transformation A0
� D A� � @��.x/

Let us assume that the KG field transforms under the gauge transformation as follows:

�0.x/ WD eiQ�.x/�.x/ with the ⁂ U.1/ chargeQ D
q

„c
2 R : (7.36)

q: electric charge of the particle described by the wavefunction �

• It is reasonable to assume that the KG field must transform via phase factors because we
already know [recall Eq. (7.19)] that the KG Lagrangian is invariant under global phase
transformations �.x/ D const. Our hope is that we can “extend” this symmetry for
arbitrary non-constant �.x/.

• The chargeQ is a property of the field and quantifies how it transforms under gauge
transformations; it essentially plays the role of the electric charge of the particle de-
scribed by �; e.g., for an electron we would setQ D �e

„c
< 0.

The additional division by „c is necessary for dimensional reasons: Œ�� D LŒ'� with
A� D .'; EA/; therefore Œ�q� D LŒ'q� D LŒE� D ML3

T 2 and it is Œ„c� D ML3

T 2 as well.
In natural units (where „ D 1 D c,Q D q is simply the electric charge.

• The term“U.1/ charge” highlights that the gauge transformation eiQ�.x/ 2 U.1/ is a
U.1/ gauge transformation; the charge is the generator of this Lie group.

iii | Problem:

Derivatives transform complicated under gauge transformations:

@��
0.x/ $ eiQ�.x/

�
iQ.@��/�.x/C @��.x/

�
(7.37)

! It is hard to combine derivatives of fields to construct gauge-invariant terms!

Solution:

Define the…

⁂ (Gauge) Covariant derivative: D� WD @� C iQA� (7.38)

! Lorentz vector (thus we can it use to construct Lorentz scalars!)
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The covariant derivative has the following useful property:

D0
��

0
D
�
@� C iQA� � iQ.@��/

�
eiQ�� $ eiQ�D�� (7.39)

!D�� transforms like � under gauge transformations. [and not as ugly as Eq. (7.37)!]

This is useful because it allows us to combine derivatives into gauge-invariant terms.

iv | Using the covariant derivative, we can now construct the following general Lagrangian density
that satisfies our four requirements above:

LA.�; @�/ D .D
��/.D��/

�
�M 2��� (7.40)

Please appreciate the ingenuity of the term .D��/.D��/
�: It is Lorentz invariant because

we pair the indices correctly, and it is gauge invariant because we pair .D��/with its complex
conjugate .D��/� (which is sufficient becauseD�� gauge-transforms like �).

This Lagrangian density is gauge-invariant by construction in the sense that

LA.�; @�/ D LA0.�0; @�0/ or L.�;D�/ D L.�0;D0�0/ : (7.41)

• A comparison of the free Klein-Gordon Lagrangian Eq. (7.11) and the new one Eq. (7.40)
reveals that we simply made the substitution @� 7! D�, i.e., we replaced partial
derivatives by covariant derivatives (which depend on the gauge field). This trick is not
specific to the Klein-Gordon field and yields gauge-invariant theories in general. This
procedure is called ↑ minimal coupling.

• Note that the transformation Eq. (7.36) is a local phase rotation of the KG-field. In
Eq. (7.17) we considered a global phase rotation and identified it as a continuous symme-
try of the KG Lagrangian LKG. You can check that the new local transformation does
not leave LKG invariant, but it does leave LA invariant if A� transforms together with
� as defined above. The transition from LKG (with a global symmetry) to LA (with a
local version of the same symmetry) is called gauging the symmetry. You can use this
line of reasoning to “invent” the electromagnetic gauge field: If you start from a global
continuous symmetry and demand that it becomes a local symmetry, you have to pay
for it by introducing a new field: the gauge field.

v | Klein-Gordon equation in a static EM field:

The Euler-Lagrange equations of LA yield: Eq. (6.6)
Eq. (7.40)
�����!

.D2 CM 2/�.x/ D 0 (7.42)

withD2 D D�D� andM D mc
„
.

In the form Eq. (7.42) both Lorentz covariance and gauge invariance are manifest (because
we use the covariant derivative). If we expand everything, we loose these features but obtain
a less abstract (but more complicated) form of the PDE:�

1

c2

�
@t C iQc'

�2
�

�
r � iQ EA

�2
C
m2c2

„2

�
�.t; Ex/ D 0 (7.43)

Here we used A� D .';� EA/ (covariant!).
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vi | Example: Hydrogen atom

Goal: Describe the electron of the hydrogen atom in the static EM field generated by the
proton in terms of the KGE; i.e., we interpret the KG field � naïvely as the wavefunction of
the electron. Our hope is that the energy spectrum of this relativistic theory explains the
observed fine-structure splitting.

a | ^ Coulomb potential (of proton with charge e > 0)!

Choose a gauge where '.x/ D
e

jExj
and EA D E0 (7.44)

ı
�!With electron chargeQ D �e

„c
< 0 one finds:�

1

c2

�
i@t C

e2

„jExj

�2
Cr

2
�
m2c2

„2

�
�.t; Ex/ D 0 (7.45)

b | ^ Ansatz �.t; Ex/ D Q�.Ex/e� i
„
Et
!“Stationary” Klein-Gordon equation:"

c2„2�C

�
E C

e2

jExj

�2
�m2c4

#
Q�.Ex/ D 0 (7.46)

Note that this PDE is quadratic in the energyE (and not linear, like the time-independent
Schrödinger equation).

c | One can use a clever mapping to the non-relativistic Schrödinger equation to solve for
Q�.Ex/ and determine the energiesE for which solutions exist:

�
�! En;l D

mc2q
1C ˛2

.n�ıl /
2

with ıl D l C
1
2
�

q�
l C 1

2

�2
� ˛2 : (7.47)

Here n D 1; 2; : : : is the ↓ principal quantum number and l D 0; 1; 2; : : : is the ↓ orbital
angular momentum quantum number. ˛ D e2

„c
�

1
137

is the fine-structure constant.

d | Comments:

• The spectrum Eq. (7.47) predicts a splitting of the l-degeneracy; recall that this
degeneracy is perfect in the non-relativistic hydrogen atom [cf. Eq. (7.8)]. Unfortu-
nately, the spectrum Eq. (7.47) does not match observations! The reason is that
the Klein-Gordon equation does not know about the electron spin. Schrödinger
and his contemporaries were aware of this solution and its problems (this shines
through in the quotes at the beginning of this chapter). This failure to predict
the fine-structure correctly led to the dismissal of the Klein-Gordon equation and
motivated Paul Dirac to search for another equation (→ next section).

• Today we know that the Klein-Gordon equation is not wrong: It simply does not
apply to particles with non-zero spin (and the electron in the hydrogen atom hap-
pens to have spin s D 1

2
). However, it does apply to spin-0 particles like ↑ kaons (K

mesons, bound states of two quarks), ↑ pions (pi mesons), and the ↑ Higgs boson
(the latter being the only elementary particle with zero spin). But since we cannot
build hydrogen atoms out of these particles, the significance of the above solution
remains limited.

7 | First-order formulation:

Here we consider again the free KGE (without EM field) for simplicity.

i | KGE = Second-order PDE in time
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Problem: �.t D 0; Ex/ does not specify the state of the system completely [unlike for the
Schrödinger equation one also needs P�.t D 0; Ex/ to pick out a unique solution �.t; Ex/].

Recall: Every higher-order differential equation can be recast as a first-order differential
equation with multiple components.

!Goal: Rewrite the KGE in the first-order form

i„@tˆ D OHKGˆ with ˆ D

�
�C

��

�
: (7.48)

Downside: In this form, the KGE is no longer manifest Lorentz covariant.

ii | Define

�˙ WD
1

2

�
� ˙

i„

mc2
@t�

�
(7.49)

so that

� D �C C �� and
i„

mc2
@t� D �C � �� : (7.50)

iii | Define the 2 � 2 differential operator

OHKG WD

�
OH0 Cmc

2 OH0
� OH0 � OH0 �mc

2

�
D OH0 ˝ .�

´
C i�y/Cmc2�´ (7.51)

with OH0 D � „2

2m
r2 the free particle Hamiltonian and the Pauli matrices

�x D

�
0 1

1 0

�
; �y D

�
0 �i

i 0

�
; �´ D

�
1 0

0 �1

�
: (7.52)

OHKG is a linear operator on the Hilbert space L2 ˝C2 of two-component square-integrable
functions. Note that OH �

KG D
OH0 ˝ .�

´ � i�y/Cmc2�´ ¤ OHKG is non-Hermitian with
respect to the conventional inner product on L2 ˝C2:

hˆj‰iL2˝C2 D

Z
d3x ˆ�.x/‰.x/ D

Z
d3x

�
��

C C C �
�
� �

�
: (7.53)

iv | Check that the differential equation in first-order Schrödinger form

i„@tˆ D OHKGˆ ,

(
i„@t�C D . OH0 Cmc

2/�C C OH0��

i„@t�� D � OH0�C � . OH0 Cmc
2/��

(7.54)

is equivalent to the KGE:

a | Indeed, the difference of the two equations yields

�
„2

mc2
@t� D . OH0 Cmc

2/� C OH0� ,
1

c2
@t� � r

2� C
m2c2

„2
� D 0 (7.55)

where we defined � WD �C C �� and � WD mc2

i„
.�C � ��/.

b | By contrast, the sum of the two equation yields

mc2@t� D . OH0 Cmc
2/� � OH0� , @t� D � : (7.56)

c | Combining Eq. (7.55) and Eq. (7.56) returns the KGE:

1

c2
@2t � � r

2� C
m2c2

„2
� D 0 : (7.57)
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v | If one defines the

⁂ Klein-Gordon adjoint N̂ WD ˆ��´ D
�
��

C;��
�
�

�
; (7.58)

one can express the Klein-Gordon sesquilinear form Eq. (7.25) as

hˆj‰iKG WD

Z
d3x N̂ .x/‰.x/ 7.49

D
i„

2mc2

Z
d3x

�
�� P � P�� 

� 7.25
D h�j iKG : (7.59)

Remember that this is not a proper inner product because it is not positive-definite.

vi | If one defines additionally for an operator A on L2 ˝C2 the

⁂ Klein-Gordon adjoint NA WD �´A��´ ; (7.60)

it follows Aˆ D N̂ NA and NNA D A, and thereby

hˆjA‰i
7.59
D h NAˆj‰i : (7.61)

vii | It is easy to verify that the KG Hamiltonian is “Klein-Gordon Hermitian”, namely

NOHKG
7.51
D OHKG (7.62)

because �´�y�´ D ��y .

viii | With this machinery, we have now a new method to check that the time-evolution generated
by the KGE leaves the KG sesquilinear form invariant:

d
dt
h�j iKG

7.59
D

d
dt
hˆj‰iKG (7.63a)

D hˆj P‰iKG C h P̂ j‰iKG (7.63b)

7.54
D

1

i„
hˆj OHKG‰iKG �

1

i„
h OHKGˆj‰iKG (7.63c)

7.61
7.62
D

1

i„

�
hˆj OHKG‰iKG � hˆj OHKG‰iKG

�
D 0 (7.63d)

We already knew this fromNoether’s theorem, but it is always nice to derive such statements
in various ways.

8 | Non-relativistic limit:

i | Goal: Derive a non-relativistic approximation of the Klein-Gordon equation�
1

c2
@2t � r

2
C
m2c2

„2

�
�.t; Ex/ D 0 : (7.64)

ii | ^ Kinetic energy: Ekin D E �mc
2 D

p
Ep2c2 Cm2c4 �mc2 � 1

2
mv2 CO.ˇ4/

(Note that bothEkin andE are non-negative!)

^ Ansatz:

�˙.t; Ex/ D Q�˙.Ex/e
� i

„
Et
D Q�˙.Ex/e

� i
„
Ekint„ ƒ‚ …

DW O�˙.t;Ex/

e� i
„
mc2t (7.65)

O�.t; Ex/ contains only the time evolution due to the kinetic energy, excluding the rest energy.
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iii | If we use that

@2t
O�˙ D �

E2kin
„2
O� ; (7.66)

we can make the following approximation in the non-relativistic limitEkin � mc2:

@2t �˙ D e
� i

„
mc2t

(
@2t
O�˙ �

2imc2

„
@t O�˙ �

�
mc2

„

�2
O�˙

)
(7.67a)

D �e� i
„
mc2t

(
˙
2imc2

„
@t O�˙ C

�
mc2

„

�2 "
1C

�
Ekin

mc2

�2#
O�˙

)
(7.67b)

� �e� i
„
mc2t

(
˙
2imc2

„
@t O�˙ C

�
mc2

„

�2
O�˙

)
(7.67c)

iv | Eq. (7.67c) in Eq. (7.64) yields:

e� i
„
mc2t

�
˙
2im

„
@t C

m2c2

„2
Cr

2
�
m2c2

„2

�
O�˙.t; Ex/ D 0 (7.68)

And finally:

˙i„@t O�˙.t; Ex/ D �
„2

2m
r
2 O�˙.t; Ex/ (7.69)

This is the Schrödinger equation for a free particle.

Note that the “negative energy solutions” �� lead to the time-inverted Schrödinger equation.

7.2. The Dirac equation

The Dirac equation was published by Paul Dirac in [87], only two years after Schrödinger published the
Schrödinger equation.

1 | Goal:

The Klein-Gordon equation has a few undesirable quirks:

• It’s conserved U.1/ current has no positive-definite density and therefore cannot be interpreted as a
probability current. Conversely, the conventional norm onL2 is not conserved. In the first-order
formulation, this corresponds to a non-Hermitian Hamiltonian.

! Can we construct a relativistic field equation with a conserved positive-definite density
that gives rise to a norm and a Hermitian Hamiltonian?

• In its manifest Lorentz covariant formulation, the KGE is of second order in time, so that we must
provide both the wavefunction and its time derivative as initial data.

! Can we construct a relativistic field equation which is first order in time (just like the
Schrödinger equation)?

• For each momentum there is are two solutions: one with positive and one with negative energy.

! Can we get rid of the negative energy solutions?

The Dirac equation succeeds in solving the first two issues – but not the last one, i.e., there will
still be negative energy solutions.
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2 | Observation:

To reach our goals we must equip our “toolbox” of tensor calculus with additional building blocks.
As it turns out, there is another type of field (besides the tensor fields we introduced in Chapter 3)
that plays an important role in quantum mechanics: ↑ spinor fields.

Remember: Vector fields under rotations: E�0.Ex/ D R E�.R�1 Ex/

! In general, a field �.x/ 2 Cn can transform under homogeneous Lorentz transformations as

�0
a.x/ DMab.ƒ/�b.ƒ

�1x/ a D 1; : : : ; n (7.70)

where

M.ƒ0/M.ƒ/�.ƒ�1ƒ0�1x/
Š
DM.ƒ0ƒ/�..ƒ0ƒ/�1x/ (7.71)

is a n-dimensional representation of the (proper orthochronous) Lorentz group SOC.1; 3/.

• Regarding groups and their representations: → Problemset 1.

• More explicitly: The tensor fields (of various rank) we know so far allow only for the descrip-
tion of particles with integer spin S D 0; 1; 2; � � � (spin = internal angular momentum). What
we are missing are fields that can describe particles with half-integer spin S D 1

2
; 3
2
; � � � ; these

are the spinor fields.

The reason why this is crucial for relativistic quantum mechanics in particular has to do
with the fact that multiplying wave functions by a global phase does not change the state.
In mathematical parlance we are dealing with ↑ projective Hilbert spaces and ↑ projective
representations of symmetries. Thus if you are interested what rotations SO.3/ do to the
quantum state of your system, you must study all projective representations of SO.3/. It turns
out that these can be identified with the“conventional” (= linear) representations of another
group: SU.2/ (the so called ↑ double cover of SO.3/). And you know that the irreducible
representations of SU.2/ are labeled by“spin quantum numbers” s D 0; 1

2
; 1; 3

2
; 2; : : :. In

general, the double covers of SO.n/ are called ↑ spin groups Spin(n), and similarly, the double
cover of the proper orthochronous Lorentz group SOC.1; 3/ is the group Spin.1; 3/ '
SL.2;C/ (the group of complex 2 � 2matrices with determinant one). It turns out that the
irreducible representations of this group can be labeled by two numbers .m; n/ withm; n D
0; 1
2
; 1; 3

2
; : : :. The spinor representations we are interested in (the ones missing from our

discussion of tensor fields) are the ones for whichmCn is half-integer. Conversely, the .1
2
; 1
2
/

representation is our well-known 4-vector representation A� and the .0; 0/ representation is
that of a scalar like �.

3 | We want a first-order relativistic field equation! Ansatz:

.@�@� C const/� D 0 ) .i��@� C const/� D 0 (7.72)

We do not yet know what � is (only that it cannot be a derivative).
The i anticipates wave-like solutions for real �.

A covariant equation of the form @�� D 0 or @�A� D 0 would of course also be possible; their
solutions, however, are either too simple or do not match observations.

4 | Then (combine 2 & 3)

i | ^ Coordinate transformation x0 D ƒx & Field transformation �0.x0/ DM.ƒ/�.x/

ii | ^ � with .i��@� C const/�.x/ D 0 for all x

That is, �.x/ is a solution of the equation we want to construct.
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iii | When is �0.x/ DM.ƒ/�.ƒ�1x/ is a new solution?

We want the equation to be Lorentz covariant; this means that the Lorentz group must be
(part of ) its invariance group: Lorentz transformations map solutions to new solutions.

.i��@� C const/�0.x/ D Œi��.ƒ�1/��@� C const�M.ƒ/�.ƒ�1x/
Š
D 0 (7.73)

Multiply withM�1.ƒ/:

, Œi M�1.ƒ/��M.ƒ/.ƒ�1/��„ ƒ‚ …
Š

D��

@� C const� �.ƒ�1x/
Š
D 0 (7.74)

!�� � 
� must be n � n-matrices with

M�1.ƒ/
�M.ƒ/ D ƒ��

� (7.75)

The
 -matrices“translate”the“spinor”-representationM.ƒ/ into the“vector”-representation
ƒ and vice versa.

5 | Question: How to find appropriate 
� andM.ƒ/ that satisfy Eq. (7.75)?

Remember: SOC.1; 3/ is a Lie group (Recall → Problemset 4):

ƒ D exp
�
�
i

2
!˛ˇJ˛ˇ

�
!�1
� 1 �

i

2
!˛ˇJ˛ˇ (7.76a)

M.ƒ/ D exp
�
�
i

2
!˛ˇS˛ˇ

�
!�1
� 1 �

i

2
!˛ˇS˛ˇ (7.76b)

!˛ˇ antisymmetric tensor! 3 rotations (angles) + 3 boosts (rapidities)

It is .J˛ˇ /�� D i.ı˛�ı
ˇ
� � ı

˛
� ı
ˇ
�/; these 4 � 4matrices J˛ˇ generate the 4-vector representation

.1
2
; 1
2
/, i.e., the 4 � 4-matrices ƒ. By contrast, the n � n-matrices S˛ˇ generate the spinor-

representation M.ƒ/ [we will find .1
2
; 0/ ˚ .0; 1

2
/]. The generators are antisymmetric in the

spacetime indices.

• Infinitesimal form of Eq. (7.75):h

�;S˛ˇ

i
$ .J˛ˇ /��


� $ i.�˛�
ˇ � �ˇ�
˛/ (7.77)

• ^ J˛ˇ (→ Problemset 4)! Lie-algebra of Lorentz group (J D S ;J):�
J�� ; J ��

�
$ i.���J�� � ���J �� � ���J�� C ���J ��/ (7.78)

The Lie algebra defines the structure of the Lie group by exponentiation and is therefore the
same for all representations, recall Eq. (4.63).

6 | Solution to Eq. (7.75) via Dirac’s trick [87]: ^ 
� such that

f
�; 
�g D 2��� 1n�n ⁂ Dirac algebra (7.79)

with the ↓ anticommutator fX; Y g D XY C YX .
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• Matrices 
� D .
0; 
1; 
2; 
3/ that satisfy Eq. (7.79) are called ⁂ Dirac matrices or
⁂ Gamma matrices.

• This is the 16-dimensional Clifford algebra C`1;3.C/.

Then

S�� WD
i

4

�

�; 
�

�
(7.80)

satisfies the Lorentz algebra Eq. (7.78) and Eq. (7.77).

Check this by plugging Eq. (7.80) into Eq. (7.78) and Eq. (7.77) and using Eq. (7.79)!

! Problem of solving Eq. (7.75) has been reduced to finding 4 matrices 
� that satisfy Eq. (7.79).

7 | Representations of Eq. (7.79):

• At least n D 4-dimensional
(Think of the 
� as Majorana modes and construct ladder operators! 2 modes.)

• All 4-dimensional representations are unitarily equivalent
(Actually, they constitute the unique irrep of the Dirac algebra which is 4-dimensional.)

• We use the Weyl representation (sometimes called chiral representation):


0 D

�
0 1

1 0

�
and 
 i D

�
0 � i

�� i 0

�
i D 1; 2; 3 (7.81)

– Recall the Pauli matrices Eq. (7.52):

�x D

�
0 1

1 0

�
; �y D

�
0 �i

i 0

�
; �´ D

�
1 0

0 �1

�
: (7.82)

– Other common choices are the ↑ Dirac representation and the ↑ Majorana representation.

• Henceforth: ƒ 1
2
�M.ƒ/

It turns out that these are two“copies”of a spin-1
2
projective representation: ƒ 1

2
corresponds

to the .1
2
; 0/ ˚ .0; 1

2
/ representation of SL.2;C/. Since n C m D 1

2
, this is a spinor

representation, i.e., a projective representation of the Lorentz group SOC.1; 3/. The fact
that it is the sum of two such representations makes it reducible. The wavefunction‰.x/ has
therefore n D 4 components and is a spinor field (and not a tensor field).

8 | Setting const D �M D �mc
„

(which has dimension of an inverse length), we find:

.i
�@� �M/‰ D 0 ⁂ Dirac equation (7.83)

Here, ‰.x/ is a ⁂ (bi)spinor-field:

‰ W R1;3 ! C4
D C2

˚C2 : (7.84)

Introduce the ⁂ Feynman slash notation: =O WD 
�O�

(Here,O� stands for any object with a 4-vector index.)
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With the slash notation, the Dirac equation can be written as:

.i =@ �M/‰ D 0 (7.85)

TheDirac equation is engraved in a plaque on the floor ofWestminsterAbbey next to IsaacNewton’s
tomb (they abbreviate 
 � @ D 
�@� and are in natural units „ D 1 D c whereM D m):

(Photograph from https://cerncourier.com/a/paul-dirac-a-genius-in-the-history-of-physics.)

9 | The components ‰a.x/ (a D 1; 2; 3; 4) satisfy the KGE:

0 D .�i
�@� �M/.i
�@� �M/‰
7.79
D .@2 CM 2/‰ (7.86)

On the right hand side of Eq. (7.86) there is an identity 14�4 that we omit.

• The Dirac differential operator is the“square root” of the Klein-Gordon differential operator.

• ¡! Although ‰ has as many components as the EM gauge field A�, we do not write these
components as ‰�, but either simply as ‰ (and think of it as a four-dimensional column
vector), or as‰a with spinor index a D 1; 2; 3; 4. The purpose of this notational difference
is to denote the different ways the fields transform under Lorentz transformations:

A0�
D ƒ��A

� versus ‰0
a D .ƒ 1

2
/ab‰b or simply ‰0

D ƒ 1
2
‰ : (7.87)

Note thatƒ � ƒ�� andƒ 1
2
DM.ƒ/ are not the same 4 � 4matrices!

10 | Dirac adjoint:

We would like to find a Lagrangian density for the Dirac equation; since this must be a Lorentz
scalar, we ask the question:

How to form Lorentz scalars from Dirac spinors?

i | First try: ‰�‰

‰0�‰0
D ‰�ƒ

�
1
2

ƒ 1
2„ƒ‚…

¤1

‰ ¤ ‰�‰ (7.88)

ƒ 1
2
is not unitary because S�� is not Hermitian for boosts (� D 0 and � D 1; 2; 3).

This is a consequence of the ↑ non-compactness of the Lorentz group due to boosts.

ii | Define

N‰ WD ‰�
0 ⁂ Dirac adjoint (7.89)
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ı
�! N‰0‰0 D N‰ƒ�1

1
2

ƒ 1
2
‰ D N‰‰) Lorentz scalar

Use Eq. (7.80) and Eq. (7.76b) and the Dirac algebra to show this!

11 | Lagrangian:

With these tools, it is reasonable to propose the following Lagrangian density:

LDirac D N‰.i

�@� �M/‰ D N‰.i =@ �M/‰ (7.90)

ı
�! Euler-Lagrange equations = Dirac equation

• Note that in explicit index notation, the Lagrangian density reads

LDirac D i N‰a

�

ab
.@�‰b/ �M N‰a‰a (7.91)

where sums over pairs of spinor indices are implied.

The Euler-Lagrange equations follow again by treating‰a and N‰a as independent fields:

0
Š
D
@LDirac

@ N‰a
� 0 D i


�

ab
.@�‰b/ �M‰a D

�
.i =@ �M/‰

�
a

(7.92a)

0
Š
D
@LDirac

@‰a
� @�

@LDirac

@.@�‰a/
D �M N‰a � i.@� N‰b/


�

ba
$
h
.i =@ �M/‰

i
a

(7.92b)

Note that the two equations are Dirac adjoints of each other.

• Let us check that LDirac is a Lorentz scalar:

L0
Dirac D

N‰0
�
i
�@0

� �M
�
‰0 (7.93a)

D N‰ƒ�1
1
2

�
i
�ƒ �

� @� �M
�
ƒ 1

2
‰ (7.93b)

D N‰
�
iƒ�1

1
2


�ƒ 1
2
ƒ �
� @� �M

�
‰ (7.93c)

7.75
D N‰

�
iƒ��


�ƒ �
� @� �M

�
‰ (7.93d)

D N‰ .i
�@� �M/‰ D LDirac (7.93e)

Here we used the following fact:

The gamma matrices transform not like Lorentz vectors: 
 0�
D 
�. (7.94)

This is good because otherwise the Dirac equation would be different in different inertial systems.

This also means that slashed quantities (like =@ D 
�@�) are not Lorentz scalars. Think of it like
this: they do not have a Lorentz index, but they do have a two spinor indices (which we don’t write)
because they are matrices. To get rid of these indices, you must pair them with the indices of spinor
fields. That is, slashed quantities become Lorentz scalars if put between two Dirac spinors like in
the Dirac Lagrangian: N‰=@‰ is a scalar field.

12 | Conserved current:

Now that we have a Lagrangian, it is just a straightforward application of Noether’s theorem to
obtain the conserved current associated to global phase rotations:
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i | ^ Global phase rotations:

Eq. (7.90) is clearly invariant under global phase rotations of the spinors:

‰0.x/ D ei˛‰.x/ for ˛ 2 Œ0; 2�/ (7.95)

with infinitesimal generator j˛j D jwj � 1

‰0.x/ D ‰.x/C iw‰.x/ � ‰.x/C w ı‰.x/ ) ı‰ D i‰ (7.96)

! Continuous symmetry:

LDirac.‰; @‰/ D LDirac.‰
0; @‰0/ (7.97)

ii | Noether theorem 6.85! Conserved current density:

A straightforward calculation yields:

j
�
Dirac

6.84
D �

@LDirac

@.@�‰a/
ı‰a

7.91
D N‰b


�

ba
‰a D N‰


�‰ : (7.98)

j
�
Dirac D

N‰
�‰ with @�j
�
Dirac D 0 (7.99)

Since the Lagrangian density LDirac is a Lorentz scalar, this Noether current must be a
4-vector. We can check this explicitly:

j
0�
Dirac D

N‰0
�‰0
D N‰ƒ�1

1
2


�ƒ 1
2
‰

7.75
D ƒ��

N‰
�‰ D ƒ��j
�
Dirac : (7.100)

iii | Conserved Noether charge:

Q D

Z
d3x N‰
0‰ D

Z
d3x ‰�‰„ƒ‚…

�0

� 0 (7.101)

!

Conserved norm on L2 ˝C4: k‰k2 WD
Z

d3x ‰�‰ (7.102)

• ¡! The positive-definite density ‰�‰ D N‰
0‰ is the time-component of a 4-vector
and therefore not Lorentz invariant. However, the Noether chargeQ is a Lorentz scalar
so that the norm is Lorentz invariant: k‰0k

�
D k‰k.

Note that not all Noether charges are Lorentz scalars. The total field momentum
Eq. (6.92), for example, is a 4-vector; similarly, the total field angular momentum
Eq. (6.117) is a tensor of rank 2. However, it can be shown that the Noether charges of
internal symmetries (like the U.1/ symmetry considered here) are necessarily Lorentz
scalars (↑ Coleman-Mandula theorem [90]).

Let us proveQ0
a D Qa in the case where the Noether current j�a has no other Lorentz

index (and the internal group generators commute with the generators of Lorentz
transformations):
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a | We consider an infinitesimal Lorentz transformation.

Coordinates transform according to Eq. (6.78),

ı˛ˇx� D
1

2

�
�˛�xˇ � �ˇ�x˛

�
; (7.103)

and, as a 4-vector, the components of the current transform in the same way:

ı˛ˇj�a D
1

2

�
�˛�j ˇa � �

ˇ�j ˛a

�
$ j �a

�
@�ı

˛ˇx�
�
: (7.104)

(The labelsa of the internal symmetry do notmix under this transformation because
the internal symmetry is assumed to commute with Lorentz transformations.)

The generator of Lorentz transformations acts then according to Eq. (6.81) on the
current field

�iG˛ˇj�a .x/ D ı
˛ˇj�a � .@�j

�
a /ı

˛ˇx� : (7.105)

In the following we suppress the indices ˛ˇ whenever possible.

b | It is easy to check that @�ıx� D 0; furthermore, we know that @�j �a D 0 from
the Noether theorem. Together, this allows us to write the action of infinitesimal
Lorentz transformations on the current as a 4-divergence:

�iGj�a .x/ D .@�j
�
a /„ƒ‚…

D0

ıx� C j �a .@�ıx
�/ � .@�j

�
a /ıx

�
� j�a .@�ıx

�/„ ƒ‚ …
D0

(7.106a)

D @�
�
j �a ıx

�
� j�a ıx

�
�
: (7.106b)

Here we used that ıj�a D j �a .@�ıx
�/.

c | Wefinally obtain for the infinitesimal Lorentz transformation of theNoether charge:

�iGQa D

Z
d3x .�iGj 0a / (7.107a)

D

Z
d3x @�

�
j �a ıx

0
� j 0a ıx

�
�

(7.107b)

D

Z
d3x @i

�
j iaıx

0
� j 0a ıx

i
�

(7.107c)

Gauss’s theorem

D

Z
@

d�i
�
j iaıx

0
� j 0a ıx

i
�
D 0 (7.107d)

In the last step we used that on the surface @ (typically spatial infinity) all fields
vanish (for wavefunctions in L2 this is clearly true).

Thus anyNoether charge derived from internal symmetries transforms as a Lorentz
scalar. In particular, theDirac norm k‰k is invariant under Lorentz transformations
of the bispinor fields‰.x/.

13 | Hamiltonian:

i | Since the Dirac equation is first order in time, we can easily bring it into Schrödinger form
and identify the Hamiltonian as the generator of time translations:

Eq. (7.83) ,

h
i„
0@t C i„c


i@i �mc
2
i
‰ D 0 (7.108)

Use .
0/2 D 1!

i„@t‰ D
h
�i„c
0
 i@i C 


0mc2
i
‰ (7.109)
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ii | Let us define the new matrices:

ˇ WD 
0 D

�
0 1

1 0

�
; ˛i WD 


0
 i D

�
�� i 0

0 � i

�
i D 1; 2; 3 (7.110)

with ˇ2 D 1 D ˛2i and f˛i ; j̨ g D 0 D f˛i ; ˇg for i ¤ j , and in particular

ˇ� D ˇ and ˛
�
i D ˛i : (7.111)

¡! Note that the spatial gamma matrices are anti-Hermitian: .
 i /� D �
 i .

iii | With these matrices we can define the…

⁂ Dirac Hamiltonian:
OHDirac D �i„c Ę � r C ˇmc

2
D c Ę � Ep C ˇmc2 (7.112)

with Ę D .˛1; ˛2; ˛3/ and the ↓ momentum operator Ep D �i„r.

! The Dirac Hamiltonian is Hermitian:
(With respect to the standard inner product on L2 ˝C4):

OH
�
DiracD c Ę

�
� Ep� C ˇ�mc2 D c Ę � Ep C ˇmc2 D OHDirac (7.113)

Here we use that the momentum operator is self-adjoint (Hermitian) for (a dense subset of )
functions in L2.R3;C/:

h j Ep�i D

Z
d3x  �.�i„r�/ D

Z
d3x .�i„r /�� D h Ep j�i : (7.114)

We used partial integration and lim
jExj!1

�.Ex/ D 0 D lim
jExj!1

 .Ex/ for admissible functions.

iv | The Dirac equation then takes the Schrödinger form

i„@t‰.x/ D OHDirac‰.x/ (7.115)

In this form its Lorentz covariance is no longer manifest.

v | Eq. (7.102) conserved! ^ Inner product on L2 ˝C4:

h‰jˆi WD

Z
d3x ‰�.t; Ex/ˆ.t; Ex/ with k‰k D

p
h‰j‰i (7.116)

This inner product is constant under the evolution of the Dirac equation:

Eq. (7.113) & Eq. (7.115) )
d
dt
h‰jˆi $ 0 (7.117)

• This generalizes our previous finding in Eq. (7.102) about the conserved norm.
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• That the inner product is constant is straightforward to show:

d
dt
h‰jˆi D

Z
d3x

h
‰� P̂ C P‰�ˆ

i
(7.118a)

7.115
D

1

i„

Z
d3x

�
‰�

�
OHDiracˆ

�
�

�
OHDirac‰

��
ˆ

�
(7.118b)

7.113
D

1

i„

Z
d3x

h
‰�

�
OHDiracˆ

�
�‰�

�
OHDiracˆ

�i
D 0 (7.118c)

14 | Conclusion:

Let us summarize our findings and compare them to the Klein-Gordon equation:

Klein-Gordon Equation Dirac Equation

.@2 CM 2/� D 0 .i =@ �M/‰ D 0

Time derivative second order first order

Function space L2.R1;3;C/ L2.R1;3;C2 ˚C2/

Wavefunction Complex scalar field �.x/ Complex bispinor field‰.x/

Conserved form i

Z
d3x

�
��
1
P�2 � P�

�
1�2

� Z
d3x ‰�1‰2

Positive definite? 7 3

Hermitian
Hamiltonian? 7 3

!What about the eigenenergies and eigenstates of OHDirac?

7.2.1. Free-particle solutions of the Dirac equation

15 | Eq. (7.86): Solutions of the Dirac equation satisfy the Klein-Gordon equation component-wise:

Eq. (7.34)
�����! Ansatz:

‰˙.x/ D  ˙.p/e� i
„
px with p0 D

E

c
D

q
Ep2 Cm2c2 > 0 (7.119)

with complex-valued four-component ⁂ bispinor

 ˙.p/ �

�
 ˙
L

 ˙
R

�
2 C4

' C2
˚C2 : (7.120)

• We setp0 > 0 for both positive (C) and negative (�) energy/frequency solutions and change
the sign of p in the exponent (to simplify the discussion below).

• Note that px D p�x� D Et � Ep � Ex.

16 | Eq. (7.119) in Eq. (7.83) yields:

.˙
�p� �mc/ 
˙.p/ D

�
�mc ˙p�

˙p N� �mc

��
 ˙
L

 ˙
R

�
D 0 (7.121)

with p� D p��� and �� D .1; �x; �y ; �´/ and N�� D .1;��x;��y ;��´/.
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17 | Mathematical facts (check these!):

• .p�/.p N�/ $ p2 D m2c2

• Eigenvalues of p� and p N� : p0 ˙ j Epj ! for p0 > 0 and m ¤ 0 positive spectrum

! p� and p N� are invertible and the positive square roots
p
p� and

p
p N� are Hermitian.

18 | ^  ˙
L �

p
p� �˙ with arbitrary, normalized [.�˙/��˙ D 1] ⁂ spinor �˙ 2 C2:

Eq. (7.121) ) �mc
p
p� �˙

˙ p�  ˙
R D 0 (7.122)

Use
p
p�
p
p N� D mc:

 ˙
R D ˙

mc
p
p�

�˙
D ˙

p
p N��˙ (7.123)

!  ˙
L and  ˙

R are now parametrized by the spinor �˙ 2 C2 (which is unconstrained!).

The second equation in Eq. (7.121) yields the same solution.

19 | Solutions:

Let us adopt the more conventional notation

�C
7! �

��
7! �

and
 C
7! u

 �
7! v

(7.124)

and choose the spinor basis �s; �s (s D";#) with

�"; �"
D

�
1

0

�
and �#; �#

D

�
0

1

�
: (7.125)

Then linearly independent solutions of the free Dirac equation can be written as:

‰C

Ep;s
.x/ D

�p
p��s
p
p N��s

�
„ ƒ‚ …

us. Ep/

e� i
„
px (positive energy solutions)

‰�

Ep;s
.x/ D

� p
p��s

�
p
p N��s

�
„ ƒ‚ …

vs. Ep/

eC i
„
px (negative energy solutions)

(7.126a)

(7.126b)

with p� D .p0; Ep/, p0 D
p
Ep2 Cm2c2 > 0 and s D";#.

! Four linearly independent solutions for each 3-momentum Ep (˙ and s D 1; 2).

You can easily check that Eq. (7.126) form an orthogonal eigenbasis of the Dirac Hamiltonian:

OHDirac‰
˙

Ep;s
$ ˙E Ep‰

˙

Ep;s
with spectrum E Ep D

p
p2c2 Cm2c4 : (7.127)

Their orthogonality follows with the identities

Œur . Ep/��us. Ep/ $ 2
c
E Epı

rs ; Œvr . Ep/��vs. Ep/ $ 2
c
E Epı

rs ; Œur . Ep/��vs.� Ep/ $ 0 : (7.128)

! The Dirac equation still has negative-energy solutions. (7.129)
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20 | Interpretation:

• The negative energy solutions are not problematic as long as we consider a single particle
(electron) without interactions (this is also why we can apply the Dirac equation to describe
the hydrogen atom, → below). However, in reality the electron couples to a dynamic elec-
tromagnetic field and therefore could emit a photon (thereby lowering its energy). If the
negative energy eigenstates really exist, there is no reason why this process should terminate;
as a consequence, no stable electrons should exist.

Dirac writes in Ref. [91]:

It is true that in the case of a steady electromagnetic field we can draw a distinction
between those solutions [..] with E positive and those with E negative and may assert
that only the former have a physical meaning (as was actually done when the theory
was applied to the determination of the energy levels of the hydrogen atom), but if a
perturbation is applied to the system it may cause transitions from one kind of state to
the other. In the general case of an arbitrarily varying electromagnetic field we can make
no hard-and-fast separation of the solutions of the wave equation into those referring to
positive and those to negative kinetic energy. Further, in the accurate quantum theory in
which the electromagnetic field also is subjected to quantum laws, transitions can take
place in which the energy of the electron changes from a positive to a negative value even
in the absence of any external field, the surplus energy [..] being spontaneously emitted
in the form of radiation. [..] Thus we cannot ignore the negative-energy states without
giving rise to ambiguity in the interpretation of the theory.

Dirac suggested a “fix” for this problem [91]: Because the electron is a fermion, it obeys
the Pauli exclusion principle. Thus one can imagine that (for some reason) all the negative
energy states are already occupied by electrons. The electrons we see can then only occupy
the positive energy states and cannot decay to states of arbitrarily low energy. This construct
is know as the ↑ hole theory because creating a“hole” in this ↑ Dirac sea of electrons with
negative energy can be viewed as an excitation with positive energy. Dirac’s holes are of
course a precursor to what we know today as ↑ antiparticles. (Dirac didn’t think of it this
way, he conjectured that the holes in his sea of electrons are the protons!)

• However, Dirac’s interpretation is not how we deal with the negative-energy solutions today:
Within the modern framework of ↑ relativistic quantum field theories, the four single-particle
wave functions are associated (through “second” quantization of the Dirac field and the
construction of a fermionic ↑ Fock space) to two particle types, both with positive energy and
two internal spin-1

2
states:

Type Momentum Spin Energy Charge

‰C

Ep;"
W fermion C Ep C

1
2
CE Ep C1

‰C

Ep;#
W fermion C Ep �

1
2
CE Ep C1

‰�

Ep;"
W antifermion C Ep �

1
2
CE Ep �1

‰�

Ep;#
W antifermion C Ep C

1
2
CE Ep �1

(7.130)

Here“Spin” refers to the ↓ spin-polarization quantum number m´ D ˙12 .

! Take home message:

Relativistic quantum mechanics predicts spin and antiparticles. (7.131)
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The negative energy solutions (and therefore the existence of antiparticles) are a necessary
feature of relativistic quantummechanics (more precisely: relativistic quantum field theories,
via the ↑ CPT-theorem).

By contrast, the fact that particles can have an internal angularmomentum (spin), and that this
angular momentum can take half-integer values S D 0; 1

2
; 1; 3

2
; : : : is not a relativistic feature

per se: Spin enters quantum mechanics the moment one considers spatial rotations and its
representations on the Hilbert space. Because these can be ↑ projective, one is forced to study
the irreducible linear representations of SU.2/ – the double cover of the rotation group SO.3/
– which happen to be labeled by the“spin quantum numbers”S D 0; 1

2
; 1; 3

2
; : : :. Now, since

the rotation group is a subgroup of the homogeneous Lorentz group, SO.3/ � SOC.1; 3/,
the moment a quantum theory is relativistic [i.e., features a representation of SOC.1; 3/],
spin enters the stage automatically. However, you can describe quantum particles with spin
without making quantum mechanics relativistic.

• The Dirac equation applies to all spin-1
2
fermions. The most prominent example is of course

the electron e� and its associated antiparticle, the positron eC. However, all other elementary
fermions, namely leptons (like the muon/antimuon, the tau/antitau and the neutrinos) and
the six quark/antiquark pairs, are described by the Dirac equation as well.

7.2.2. The relativistic hydrogen atom

21 | Dirac equation with a static EM field:

To couple the Dirac field‰ in a gauge- and covariant way to a static EM field A�, we use the same
trick as for the Klein-Gordon equation:

← Minimal coupling Eq. (7.38)!

@� 7! D� D @� C iQA� ) =@ 7! =D D =@C iQ =A D 
�@� C iQ

�A� (7.132)

For an electron it isQ D � e
„c

with e > 0.

!

.i =D �M/‰ D 0 (7.133)

In this form, the Dirac equation is manifest Lorentz- and gauge invariant.

We can expand Eq. (7.133) to obtain a less abstract (but more convoluted) expression:�
i
�@� �Q


�A� �M
�
‰ D 0 (7.134a)

,
�
i„
0@t C i„c


i@i � q

0' C q
 iAi �mc

2
�
‰ D 0 (7.134b)

,

h
i„@t C i„c Ę � r � q ' C q Ę � EA � ˇmc

2
i
‰ D 0 (7.134c)

Here we usedQ D q
„c

,M D mc
„
, and A� D .';� EA/; q is the charge of the particle.

In Schrödinger form the Dirac equation reads then:

i„@t‰ D
h
�i„c Ę � r C q ' � q Ę � EAC ˇmc2

i
‰ (7.135a)

i„@t‰ D
h
c Ę �

�
Ep � q

c
EA
�
C q ' C ˇmc2

i
„ ƒ‚ …

OHDirac;A

‰ (7.135b)

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



SR → RELATIVISTIC FIELD THEORIES II: RELATIVISTIC QUANTUM MECHANICS

203
PAGE

22 | Choose the Coulomb potential (of the proton)

'.x/ D
e

jExj
and EA D E0 (7.136)

and set q D �e (charge of the electron)!

i„@t‰ D

�
�i„c Ę � r �

e2

jExj
C ˇmc2

�
‰ (7.137)

With the ansatz‰.t; Ex/ D  .Ex/e� i
„
Et one obtains the time-independent eigenvalue problem�

�i„c Ę � r �
e2

jExj
C ˇmc2 �E

�
 .Ex/ D 0 with  D

�
 L
 R

�
W R3 ! C4 : (7.138)

Note that ˇ (unlike ˛i ) is an off-diagonal block matrix that mixes the two spinors  C and  �; this
complicates the solution. However, one can solve Eq. (7.138) exactly and compute the eigenvalues
E and eigenstates  .Ex/.

23 | Solution:
�
�! Eigenenergies (including the rest energy of the electron):

En;j D mc
2

8̂̂̂<̂
ˆ̂:1C

˛2�
n � j � 1

2
C

q�
j C 1

2

�2
� ˛2

�2
9>>>=>>>;

� 1
2

(7.139)

with

• ↓ principal quantum number n D 1; 2; : : :

• ↓ total angular momentum quantum number j D 1
2
; 3
2
; : : : ; n � 1

2

• ↓ fine-structure constant ˛ � 1
137

The principal quantum number n D 1; 2; : : : constrains the allowed orbital angular momentum
to l D 0; 1; : : : ; n � 1. The allowed total angular momentum is then given by the usual rules of
angular momentum addition: jl � 1

2
j � j � jl C 1

2
j (in integer steps, s D 1

2
is the electron spin).

So for example n D 1 allows only for l D 0 and therefore j D 1
2
; this is the 1S1=2 orbital and

the ground state of the hydrogen atom. For n D 2 one finds again l D 0 with j D 1
2
(the 2S1=2

orbital) but also l D 1 with j D 1
2
and j D 3

2
(the 2P1=2 and 2P3=2 orbitals – which are no longer

degenerate becauseE2;1=2 ¤ E2;3=2).

This result explains why in the hydrogen spectrum the degeneracy of the 2S1=2 and 2P3=2 orbitals is
lifted whereas the 2S1=2 orbital remains degenerate with the 2P1=2 orbital (← fine-structure).

!

The Dirac equation explains the fine-structure of the hydrogen atom ,. (7.140)

Note: You may have encountered the following Hamiltonian for the hydrogen atom with added
relativistic corrections:

OHrel D
Ep2

2m
�
e2

r„ ƒ‚ …
Non-rel.

hydrogen atom

�
1

2mc2

�
p2

2m

�2
„ ƒ‚ …
Rel. kinetic energy

C
e2

2m2c2

EL � ES

r3„ ƒ‚ …
Spin-orbit coupling

�
e2„2

8m2c2
�

�
1

r

�
„ ƒ‚ …

Darwin term„ ƒ‚ …
Relativistic corrections

: (7.141)

This Hamiltonian can reproduce the fine-structure as well. It has several drawbacks, though:
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• It is only an approximation.

• It is hard to solve (perturbation theory!).

• The Schrödinger equation i„@t D OHrel is not manifestly Lorentz covariant.

• The relativistic corrections are ad hoc and seemingly independent of each other.

Luckily, Eq. (7.141) does not have to appear out of thin air; one can show via a complicated derivation
(↑ Foldy-Wouthuysen transformation) that it is indeed the non-relativistic limit [with corrections
in order .v=c/2] of the Dirac equation Eq. (7.138) in a Coulomb potential (without the rest energy
mc2 of the electron).

7.2.3. The electron g-factor

Besides the fine structure, there is one other “mystery” that the relativistic treatment of the electron
in terms of the Dirac equation finally explains: The non-classical ratio between the electrons internal
magnetic moment and its spin.

24 | ^ Dirac electron in homogeneous magnetic field EB D r � EA (' D 0):

Eq. (7.135b)
‰D e

� i
„

Et

HHHHHHHH)

h
c Ę �

�
Ep C e

c
EA
�
C ˇmc2 �E

i
 D 0 (7.142)

with bispinor

 D

�
 L
 R

�
W R3 ! C4 : (7.143)

Using Eq. (7.110) we can write this equation in terms of the two spinors:�
�cE� E� �E

�
 L Cmc

2 R D 0 (7.144a)�
CcE� E� �E

�
 R Cmc

2 L D 0 (7.144b)

Here we used E� D Ep C e
c
EA and introduced E� D .�x ; �y ; �´/.

We can now use one of the two equations to decouple the system:�
cE� E� CE

� �
cE� E� �E

�
 R C .mc

2/2 R D 0 (7.145a)

, c2.E� E�/2 R �
�
E2 � .mc2/2

�
 R D 0 (7.145b)

25 |
ı
�! Non-relativistic approximation:

We can use E2 � .mc2/2 D .E � mc2/.E C mc2/ � 2mc2 QE with QE D E � mc2 to find a
non-relativistic approximation of Eq. (7.145b):

1

2m
.E� E�/2 R D QE R (7.146)

Last, use the Pauli algebra � i�j D ıij C i"ijk�k and Bk D "ijk.@iAj / to show that .E� E�/2 $
E�2 C „e

c
E� � EB . We end up with the non-relativistic, time-independent Schrödinger equation of a

charged particle in a magnetic field with a spin-dependent Zeeman term:"
1

2m

�
Ep C

e

c
EA
�2„ ƒ‚ …

Particle in mag. field

C
e„

2mc
E� � EB„ ƒ‚ …

Zeeman effect

#
 R D QE R (7.147)
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! Potential energy of electron in magnetic field:

Emag
def
D �E� � EB

7.147
D

e„

2mc
E� � EB (7.148)

26 | !Magnetic moment (operator) of the electron:

E�e D �
e„

2mc
E� D ge

�B

„

ES (7.149)

with ↓ spin operator ES D „
2
E� and ↓ Bohr magneton �B D e„

2mc
and

⁂ Electron g-factor ge D �2 : (7.150)

27 | Comments:

• What makes Eq. (7.149) with ge D �2 remarkable is that it is not what one would expect
if the magnetic moment would be caused by a charge flying along a tiny orbit with angular
momentum ES . Indeed, a straightforward classical calculation yields for the relation between
magnetic moment and (orbital) angular momentum EL:

E�L D gL
�B

„

EL with gL D �1 : (7.151)

So, quite surprisingly, the Dirac equation predicts that the internal angular momentum (=
spin) produces “twice as much”magnetic moment as one would naïvely expect.

That this really is the case can be easily measured: Just apply a magnetic field to hydrogen
atoms and observe how strongly their spectral lines split as a function of the magnetic field
strength (↑ anomalous Zeeman effect). This effect had already been experimentally observed
at the end of the 19th century [92, 93]. Since it was unknown at the time that electrons had
spin, certain line splittings could not be explained (therefore “anomalous”). The fact that
the Dirac equation explains both – the electron spin and its “non-classical” g-factor – is
therefore a remarkable feature of relativistic quantum mechanics.

• If one measures the electron g-factor really, really precisely, one finds [94]

ge D �2:00231930436118.27/ : (7.152)

You may notice that this is not exactly �2 but a tiny bit off. One cannot explain this deviation
with theDirac equation because it stems from“virtual particles” thatmodify how the electron
interacts with the EM field (and the Dirac equation is a single-particle wave equation). It is
therefore remarkable that modern theories can explain this deviation perfectly (up to error
bars), but for this one needs the machinery of ↑ relativistic quantum field theory.
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