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↓ Lecture 14 [30.01.24]

16 | The BRT of electrodynamics:

Details: → Problemset 7

i | Using Lem D �
1
16�

F��F
�� and the transformation of a vector field (= spin-1)

ı˛ˇA� D
1

2

�
ı˛�A

ˇ
� ıˇ�A

˛
�

(6.108)

in Eq. (6.102) yields the spin current:

S�˛ˇem $
1

4�

�
F �˛Aˇ � F �ˇA˛

�
(6.109)

ii | Eq. (6.96) & Eq. (6.106) & Eq. (6.109)!

T ��em $
1

4�
F �� F

��
� ���Lem

D
1

4�

�
F �� F

��
C
���

4
F ��F��

�
$

0@ E c E…T

c E… †

1A
��

(6.110a)

(6.110b)

(6.110c)

To show this you have to use the Maxwell equations in vacuum: @�F �� D 0.

Components:

Energy density: E D
1

8�
. EE2 C EB2/ (6.111a)

Momentum density: E… D
1

4�c
. EE � EB/ (6.111b)

⁂ Maxwell stress tensor: †ij D
1

4�

�
ıij

2
. EE2 C EB2/ �EiEj � BiBj

�
(6.111c)

¡! Convince yourself thatT ��em is symmetric and gauge invariant. Note that we did not construct
it to be gauge invariant, only to be symmetric! We got this as a bonus.

iii | The conservation @�T �� D 0 of the BRT implies the following physical interpretations:

• � D 0:

@�T
�0
D
1

c

@E

@t
C cr � E… D 0 (6.112)

! ↓ Poynting’s theorem (in vacuum)

@E

@t
Cr � ES D 0 (6.113)
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with

↓ Poynting vector: ES D c2 E… D
c

4�
. EE � EB/ (6.114)

Eq. (6.113)! Poynting vector = Energy current density

This is simply the formal statement of energy conservation for the free electromagnetic
field. As energy is the Noether charge for translations in time, it is of course no coinci-
dence that the Poynting theorem follows from the time-component � D 0.

• � D i :

@�T
�i
D
@…i

@t
C @k†ki D 0 (6.115)

! Conservation of momentum with…

– …i : i -momentum density

– †ki : i -momentum current density

!Maxwell stress tensor = Momentum current density

Note that are three momentum densities and corresponding current densities because
there are three spatial momenta: i D x; y; ´.

iv | Some final remarks:

• With the symmetric BRT one can define a gauge-invariant and conserved angular
momentum tensor

M ���
WD T ��x� � T ��x� (6.116)

with @�M ��� D 0 (show this!). The conserved Noether charges are

J�� WD
1

c

Z
d3xM 0��

D
1

c

Z
d3x

�
T 0�x� � T 0�x�

�
(6.117)

which encodes the total angular momentum of the field. Indeed, for the spatial compo-
nents one finds

Jij WD

Z
d3x

�
…ixj �…jxi

�
: (6.118)

Since…i is the momentum density, the three components Jx � J32, Jy � J13 and
J´ � J21 can be identified as the total angular momentum EJ of the field.

• If the electric current j� does not vanish (i.e., the field is not in vacuum), the BRT
derived above is no longer conserved. Rather one finds

@�T
��
em D �

1

c
F ��j� (6.119)

which can be identified as the Lorentz force density. This is perfectly reasonable as an
external (non-dynamic) current j� breaks the translation symmetry of the system in
space and time on which the conservation of the BRT relies. Physically, the electromag-
netic field is no longer a closed system because it can exchange momentum and energy
with the charges described by j�. Only if one describes the charges as dynamic degrees
of freedom (→ next section) and considers the total BRT

T �� D T ��em C T
��
charges (6.120)

one would recover the conservation @�T �� D 0; this is then a statement about total
energy and momentum conservation, including the energy and momentum of the
charges.
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6.4. Charged point particles in an electromagnetic field

1 | ^ N charged point particles with charge qi and mass mi in a EM field A�:

Eq. (6.56) & Eq. (5.41)! Relativistic action of the complete system:

SŒfxkg; A� D

Z
d4x

�
„ ƒ‚ …
Sj ŒA�: EM field with static current j�

�
1

16�c
F��F

��„ ƒ‚ …
SemŒA�
EM field

SAŒfxkg�: N particles in static fieldA�‚ …„ ƒ
�
1

c2
A�j

�„ ƒ‚ …
ScŒfxkg;A�
Coupling

�
�

NX
iD1

mic

Z
dsi„ ƒ‚ …

SpŒxi �

Particle i

(6.121)

Note that the Lagrangian is a Lorentz scalar! SŒfxkg; A� is short for SŒx1; : : : ; xN ; A�.

with current density

j�.x/
6.18
D

X
i

�i .x/
dx�i
dt
D

X
i

qiı.Ex � Exi /„ ƒ‚ …
Point particle

dx�i
dt

: (6.122)

2 | ^ Coupling:

ScŒfxkg; A� D �
1

c2

Z
d4x A�.x/j�.x/ $

X
i

�
�
qi

c

Z
A�.ct; Exi / dx

�
i

�
„ ƒ‚ …

ScŒxi ;A�

(6.123)

Here we used dx�

i

dt dt D dx�i ; the last integral is therefore a four-dimensional ↓ line integral of the
4-vectorfield A� along the trajectory of particle i .

3 | Hamilton’s principle:

ıSŒxk; A� D 0 ,

8̂̂<̂
:̂

ıSemŒA�

ıA
C
ıScŒfxkg; A�

ıA
D
ıSj ŒA�

ıA
D 0

8i W
ıScŒxi ; A�

ıxi
C
ıSpŒxi �

ıxi
D
ıSAŒfxkg�

ıxi
D 0

(6.124)
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4 | ^ Gauge field variations ıA:

Here we don’t have to do anything because we already computed the Euler-Lagrange equations:

ıSj ŒA�

ıA
D 0

6.56& 6.58
(HHHH) @�F

�� 6.122
D

4�

c

X
i

qiı.Ex � Exi /
dx�i
dt

(6.125)

These are the inhomogeneous Maxwell equations with theN point particles as sources of the EM
field. Note that this PDE system couples the particle coordinates fx�

k
g to the EM field A�.

5 | ^ Particle trajectory variations ıxi :

i | Eqs. (6.121) and (6.123)!

SAŒfxkg� D �
X
i

Z �
mic

q
Pxi� Px

�
i C

qi

c
A�.xi / Px

�
i

�
d� (6.126)

Note that this action is again reparametrization invariant.
ı
�! Euler-Lagrange equation for particle i :

ıSAŒfxkg�

ıxi
D 0

x��x
�

i

(HHH)
d
d�

h mic Px�p
Px� Px�

i
C
qi

c

�
PA�.x/ � Px

� @A�.x/

@x�

�
D 0 (6.127)

ii | Choose proper-time parametrization � D � :

mi
du�
d�
C
qi

c

dA�
d�„ƒ‚…

@A�

@x�
dx�

d�

�
@A�

@x�
dx�

d�
D 0 (6.128)

Thus we find as the EOM for particle i :

mi
du�
d�
D
qi

c

�
@A�

@x�
�
@A�

@x�

�
„ ƒ‚ …

F��

u� (6.129)

Or in the form discussed previously in Chapter 5 (we restore the particle index i):

dp�i
d�
D
qi

c
F �� .xi / u

�
i (6.130)

with 4-momentum p
�
i D miu

�
i .

¡! The field strength tensor is evaluated at the position of the particle at a given time.

iii | Compare Eqs. (5.6) and (6.130)! 4-force:

K� D

0@v EF �Ev
c

v EF

1A D qi

c
F �� v

dx�

dt
(6.131)
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! 3-force (we restore the particle index i):

EFi $ qi EEi C
qi

c
.Evi � EBi / ↓ Lorentz force (6.132)

with EEi D EE.xi /, EBi D EB.xi / and Evi D
dExi

dt .

• This result demonstrates that our concept of the relativistic 3-force introduced in
Eq. (5.11) was reasonable: for a force due to an electromagnetic field, it exactly matches
the Lorentz force.

• It also demonstrates that the common expression for the Lorentz force is already fully
relativistic. However, note that the 3-force determines the change rate of the relativistic
3-momentum Ep D vmEv, recall Eq. (5.16).

6 | Comments:

• Eqs. (6.125) and (6.130) together are the equations of motion of the composite system,
i.e., the EM field and the N particles. Note that the system of differential equations is
coupled: The dynamical positions of the particles determine the evolution of the EM field via
Eq. (6.125), and the dynamical EM field determines the trajectories of the charged particles
via Eq. (6.130).

• This model of N charged particles interacting with and via an electromagnetic field is the
culmination of our discussion of relativistic mechanics in Chapter 5 and electrodynamics in
Chapter 6.

• The theory Eqs. (6.125) and (6.130) is fully relativistic as the EOMs are manifestly Lorentz
covariant (they are tensor equations).

• Note that this model describes interactions between theN particles not directly via forces
(as one would in Newtonian mechanics), but via coupling to the dynamic EM field. Thus a
particle can locally affect the EM field due to its motion, the EM field then can propagate
with the speed of light through space and affect the trajectory of any other particle within
the lightcone of the first. There is no instantaneous interaction between the particles!

• One can also consider the� D 0 component of Eq. (6.130). Then one finds with p0i D Ei=c:

dEi
dt

$ qi EEi � Evi : (6.133)

This is just the statement that the change of energy for particle i is given by the distance
it travels collinear with the electric field per time. This is no surprise: The Lorentz force
Eq. (6.132) tells us that the force due to the magnetic field is always perpendicular to the
direction of motion and therefore cannot not perform work on the particle.

7 | Corollary: Single particle in a static electromagnetic field:

i | The action follows from Eq. (6.126) withN D 1 as:

SAŒx� D

Z
d�L.x�; Px�/ D �

Z h
mc
p
Px� Px� C

q

c
A�.xi / Px

�
i
d� (6.134)

where A� is a fixed parameter (the static field configuration).

ii | ^ Parametrization in coordinate time � D t :

L.Ex; Ev/ D �mc2

r
1 �

v2

c2
C
q

c
EA � Ev � q ' (6.135)

with A� D .';� EA/ (covariant!) and PEx D Ev.
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iii | Canonical momentum:

E� WD
@L

@Ev
$ mv Ev C

q

c
EA (6.136)

with mechanical momentum Ep D mv Ev!

Ep D E� �
q

c
EA (6.137)

Ep: Measurable momentum
!Mechanical momentum Ep gauge-invariant
! Canonical momentum E� not gauge-invariant

iv | Hamiltonian:

H D E� � Ev � L $

Mechanical energy‚ …„ ƒ
mc2q
1 � v2

c2„ ƒ‚ …
E

Cq'
5.26
D c

r�
� �

q

c
EA
�2
Cm2c2 C q' (6.138)

so that

E D H � q' (6.139)

E is gauge invariant!H is not gauge invariant

v | Summary:

Gauge invariant

8<:E D H � q'Ep D E� �
q

c
EA
,

E C q' D H

Ep C
q

c
EA D E�

9=; Gauge dependent (6.140)

For more details on the aspect of the gauge-(in)variance of certain quantities, see Ref. [79].
Note that these subtleties are not specific to a relativistic treatment, they already appear in
Newtonian mechanics (only the specific dependency of the Hamiltonian on the mechanical/-
canonical momentum and the functional form of the Lagrangian are relativistic).
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6.5. Summary: The many faces of Maxwell’s equations

Here is a compact overview over the many (physically equivalent) forms of Maxwell’s equations that we
encountered in this chapter:

Magnetic Gauss H1 : r � EB D 0

Maxwell-Faraday H2 : r � EE C 1
c @t
EB D 0

Electric Gauss I1 : r � EE D 4��

Ampère I2 : r � EB � 1
c @t
EE D 4�

c
Ej

I1 : r
2' C 1

c @t .r �
EA/ D �4��

I2 :

r
2 EA � 1

c2 @
2
t
EA

�r

�
r � EAC 1

c @t'
�
D �

4�
c
Ej

I1 :
�
1
c2 @

2
t � r

2
�
' D 4�

c c�

I2 :
�
1
c2 @

2
t � r

2
�
EA D 4�

c
Ej

I : @2A� D 4�
c j

�

H : @� QF
��
D 0

I : @�F
��
D �

4�

c
j�

H : dF D 0

I : ?d.?F / D J

I : @2A� � @�.@A/ D
4�

c
j�

I : ?d.?dA/ D J

6.10

6.14

6.16

6.19

6.50

6.70

6.49

Not manifest Lorentz covariant Manifest Lorentz covariant

W
ith

ph
ys
ic
al
fie
ld
s
F
�
�

W
ith

ga
ug
e
fie
ld
A
�

Introduce
Gauge fields:
EE D �r' � 1

c
@t

EA

EB D r � EA

Fix the
Lorenz gauge:
1
c
@t' C r � EA D 0

Identify

4-current:
j� D .c�; Ej /

4-potential:
A� D .'; EA/

Introduce
(Dual) Field strength tensor:
F�� D @�A� � @�A�

QF �� D 1
2
"��˛ˇF˛ˇ

Use
F�� D @�A� � @�A�

QF �� D 1
2
"��˛ˇF˛ˇ

Use
F D 1

2
F��dx

�^ dx�

UseF D dA
and d2 D 0

H = H1 + H2

I = I1 + I2

Check consistency

Derivation
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7. Relativistic Field Theories II: Relativistic
QuantumMechanics

Reminder

1 | The ↓ Schrödinger equation (SE)

i„@t .t; Ex/ D OH .t; Ex/ (7.1)

is a linear field equation with ↓ Hamilton operator

OH D
Ep2

2m
C V.Ex/ D �

„2

2m
�C V.Ex/ (7.2)

and the complex-valued field  W R1;3 ! C.

It describes the time evolution of a single quantum particle with massm in a potential V.Ex/ that is
initially described by the wavefunction  0.Ex/ D  .0; Ex/ at t D 0.

2 | The wavefunction has the interpretation

j .t; Ex/j2 D hProbability to find particle at time t at position Exi (7.3)

which necessitates the normalization condition

8t W k .t/k2 WD

Z
d3x j .t; Ex/j2 D 1 : (7.4)

Thus the wavefunction is an element of the Hilbert space  2 L2 � L2.R3;C/ of square-
integrable functions.

The Hermiticity OH D OH � of the Hamiltonian implies a unitary time evolution and thereby
guarantees a conserved norm:

d
dt
k .t/k2 D

Z
d3x

�
 �@t C  @t 

�
� 7.1
D

1

i„

Z
d3x

h
 �. OH / �  . OH /�

i
7.6
D 0 ; (7.5)

where we used that for  ; � 2 L2 and a Hermitian HamiltonianZ
d3x ��. OH /

def
D h�j OH i

def
D h OH ��j i

def
D

Z
d3x . OH ��/� 

OHD OH�

D

Z
d3x  . OH�/� : (7.6)

3 | Problem: The SE is Galilei covariant but not Lorentz covariant! (recall → Problemset 1)

• The SE is of first order in time but of second order in the spatial derivatives. This asymmetry
already suggests that the equation cannot be Lorentz covariant: Time is treated differently
than space in (non-relativistic) quantum mechanics.

• We would like quantum mechanics to be described by a Lorentz covariant equation because
we subscribed to ← Einstein’s principle of special relativity SR at the beginning of this course:
All laws of physics must take the same form in all inertial systems (which are related by
Lorentz transformations). This certainly includes quantum mechanics.

However, SR is just a (empirically motivated) principle, it is neither a law nor a theorem;
there may be conceivable universes in which SR simply does not apply to the quantum realm
– in which case the Schrödinger Eq. (7.1) would be a perfectly valid model.

As good physicists, we should seek for empirical evidence to settle the matter…
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4 | Evidence:

• First: The Schrödinger equation, published and studied by Erwin Schrödinger in a sequence
of papers in 1926 [80–83] (so relativity was already known at the time), was (and is) a
highly successful theory that describes a plethora of microscopic phenomena remarkably
well. Examples are the ↓ double-slit experiment, ↓ quantum tunneling effects, and, of course,
the ↓ spectrum of the hydrogen atom:

The Hamilton operator for the relative electron-proton system of the hydrogen atom is

OH D �
„2

2�
r
2
�
e2

jExj
(7.7)

with reducedmass� D memp=.meCmp/. The discrete part of the spectrum of the operator
OH can be computed exactly (ER is the ↓ Rydberg energy),

En D �
ER

n2
with principal quantum number n 2 f1; 2; : : : g, (7.8)

and determines the hydrogen spectrum:

The transitions between the levels of the hydrogen spectrum can bemeasured by spectroscopy
(↓ Lyman series [84], ↓ Balmer series [85],…; these observations have been made around
1900). The explanation of these spectral lines by the non-relativistic Schrödinger equation is
the crown jewel of quantum mechanics, and one of the most remarkable advances of 20th
century physics.

• However, it’s not all sunshine and roses. It was already known at the end of the 19th century
(due to advances in spectroscopy [86]) that the spectral lines of various atomic species
(including hydrogen) had a ↓ fine-structure. Expressed in terms of the energy levels of the
hydrogen atom, this means that some of the degenerate eigenstates of Eq. (7.7) are actually
not exactly degenerate:
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Note that this was known to Schrödinger when he published his equation in 1926; he writes
in Ref. [83] (p. 132–133):

ImAnschluß an die zuletzt erwähnten physikalischen Probleme, [..],möchte ich nun doch
die vermutliche relativistisch-magnetische Verallgemeinerung der Grundgleichungen [..]
hier ganz kurz mitteilen, wenn ich es auch vorerst nur fur das Einelektronenproblem und
nur mit der allergrößten Reserve tun kann. Letzteres aus zwei Grunden. Erstens beruht
die Verallgemeinerung vorläufig auf rein formalerAnalogie. Zweitens führt sie,wie schon
in der ersten Mitteilung erwähnt wurde, im Falle des Keplerproblems zwar formal auf
die Sommerfeldsche Feinstrukturformel und zwar mit „halbzahligem” Azimutal- und
Radialquant, was heute allgemein als korrekt angesehen wird; allein es fehlt noch die zur
Herstellung numerisch richtiger Aufspaltungsbilder der Wasserstofflinien notwendige
Ergänzung, die im Bohrschen Bilde durch den Goudsmit-Uhlenbeckschen Elektronen-
drall geliefert wird.

Note that Schrödinger was very much aware that his equation lacked Lorentz covariance and
viewed (and constructed) it as a non-relativistic approximation of a truly “relativistic quantum
mechanics” (which he didn’t know how to formulate consistently).

He also makes this clear in the introduction of Ref. [82] (p. 439):

Wesentlich größeres Interesse wird natürlich die (hier noch nicht darchgeführte) An-
wendung auf den Zeemaneffekt bieten. Diese erscheint mir unlöslich geknüpft an eine
korrekte Formulierung des relativistischen Problems in der Sprache der Wellenmechanik,
weil bei vierdimensionaler Formulierung das Vektorpotential von selbst dem skalaren
ebenbürtig an die Seite tritt. Schon in der ersten Mitteilung wurde erwähnt, daß das
relativistische Wasserstoffatom sich zwar ohne weiteres behandeln läßt, aber zu“hal-
bzahligen” Azimutalquanten, also zu einem Widerspruch mit der Erfahrung führt. Es
mußte also noch“etwas fehlen”. Seither habe ich [..] gelernt, was fehlt: in der Sprache
der Elektronenbahnentheorie der Drehimpuls des Elektrons um seine Achse, der ihm ein
magnetisches Moment verleiht.

• We can also make a back-of-the-envelope calculation to estimate whether relativistic effects
could be the root cause for the discrepancy between the non-relativistic Schrödinger equation
and the observed fine-structure:

In a classical approximation, kinetic and potential energy are of the same order:

Kinetic energy
1

2
mv2 �

e2

r
Potential energy : (7.9)

Because the system is quantum, momentum and position obey the ↓ Heisenberg uncertainty
relation �p�r � „. In the energy eigenstates of an interacting quantum system (like an
atom) we typically have�p � p and�r � r , and in our semi-classical approximation it is
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p � mv, so that

v �
e2

mvr
�
e2

„c
c D ˛c D Fine-structure constant � c �

c

137
: (7.10)

The semi-classical velocity of the electron v is therefore much smaller than the speed of
light c; this explains why the non-relativistic Schrödinger equation is so successful (and your
course non non-relativistic quantum mechanics is no waste of time). However, the observed
fine-structure splitting of spectral lines is indeed very small, so it is reasonable that relativistic
effects can have small but measurable effects in atomic physics.

The situation is therefore similar to that of Newtonian mechanics before we made it relativistic:
We have a very successful Galilei covariant theory that, however, shows signs of being the low-
velocity/energy approximation of another, presumably relativistic theory.

(Note that historically the situation is very different, though: While Newtonian mechanics, born in
the 17th century, had to wait more than 200 years to be“made relativistic”, the development of
relativistic quantum mechanics was very fast: Non-relativistic quantum mechanics was established
in 1925/26 – and just two years later, in 1928, Paul Dirac published the correct equation describing
relativistic electrons: the → Dirac equation [87].)

! Are there relativistic field equations which allow for a probabilistic interpretation?

7.1. The Klein-Gordon equation

TheKlein-Gordon equation has been studied byKlein [88] andGordon [89] in 1926 as a possible relativistic
version of the Schrödinger equation. Schrödinger and Fock found the equation independently as well.

1 | ^ Complex scalar field: � W R1;3 ! C

!Most general quadratic (superposition principle!) and Lorentz covariant Lagrangian density:

LKG.�; @�/ D .@
��/.@��

�/ �M 2��� (7.11)

M D mc
„
2 R: arbitrary parameter (m will be the mass of the particle)

• Note thatM D
mc
„
D

2�
�

has the dimension of an inverse length; here � D h
mc

is the
← Compton wavelength Eq. (5.77).

• One can also derive the non-relativistic Schrödinger equation from a Lagrangian density
(→ below):

LSE. ; @ / D i„ 
�@t �

„2

2m
.r �/.r / � V.x/ � (7.12)

This is of course not a Lorentz scalar (you cannot write this combining only tensors).

2 | Euler-Lagrange equations:

Trick: Consider � and �� as independent fields; let �� be the complex conjugate of � at the end.

@LKG

@��
� @�

@LKG

@.@���/
D 0 ) �M 2� � @�@

�� D 0 (7.13)

The Euler-Lagrange equations for the field � yield the complex conjugate Klein-Gordon equation.
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!

.@2 CM 2/�.x/ D 0 ⁂ Klein-Gordon equation (7.14)

The Klein-Gordon equation (KGE) is the simplest relativistic wave equation.

The non-relativistic Schrödinger equation follows along the same lines from Eq. (7.12):
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The Euler-Lagrange equations for  � yield the complex conjugate of the Schrödinger equation.

3 | Lorentz symmetry of the KGE:

The KGE is manifest Lorentz covariant. However, it is instructive (and useful for our derivation of
the Dirac equation → later) to check its invariance manually. To this end, we view Lorentz transfor-
mations as active transformations, mapping solutions to different solutions. This is equivalent to
the passive viewpoint where the coordinate system is transformed instead:

i | ^ Coordinate transformation: Nx D ƒx & Field transformation: N�. Nx/ D �.x/
We write Nx D ƒx for Nx� D ƒ��x� .

ii | ^ �.x/ with .@2 CM 2/�.x/ D 0 for all x
That is, �.x/ is a solution of the KGE.

iii |
ı
�! N�.x/ WD �.ƒ�1x/ is a new solution:

Use the chain rule in the first step twice:

.���@�@� CM
2/ N�.x/ D Œ���.ƒ�1/��@� .ƒ

�1/��@� CM
2��.ƒ�1x/ (7.16a)

Use invariance of the metric Eq. (4.21) (7.16b)

D .���@�@� CM
2/�.ƒ�1x/ (7.16c)

D .@2 CM 2/�.ƒ�1x/
� solution
D 0 (7.16d)

Here @��.ƒ�1x/must be read as @��.y/jyDƒ�1x , i.e., we compute the derivative of the
function � with respect to its argument y and then plug in the valueƒ�1x.

4 | Conserved current:

i | ^ Global phase rotations:

�0.x/ D ei˛�.x/ for ˛ 2 Œ0; 2�/ (7.17)

with infinitesimal generator j˛j D jwj � 1

�0.x/ D �.x/C iw�.x/ � �.x/C w ı�.x/ ) ı� D i� (7.18)

Note that this is an“internal symmetry” that has nothing to do with spacetime; thus ıx D 0.
For the complex conjugate field �� one finds analogously ı�� D �i��.

! Continuous symmetry:

LKG.�; @�/ D LKG.�
0; @�0/ (7.19)

If the Lagrangian density is invariant, the action is trivially invariant!
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ii | Noether theorem Eq. (6.85)! Conserved Noether current density Eq. (6.84):

j
�
KG $ i.@��/��

� i.@���/� (7.20)

Note that if one treats � and �� independent fields, one has to sum over the two fields in the
evaluation of the Noether current; this then yields the real-valued current density above.

! Noether charge density:

�KG.x/ WD j
0
KG.x/ D

i

c
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P���
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�
with �KG.x/ 2 R (7.21)

! Conserved Noether charge:
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(7.22)

Important: �KG.x/ Q 0 is not positive-definit! !

�KG.x/ cannot be interpreted as a probability density! (7.23)

• To sum up:

– The inner product (= positive-definite, symmetric sesquilinear form) onL2.R1;3;C/

h�j iL2 WD

Z
d3x �� (7.24)

is not conserved under the time-evolution of the KGE.

– The indefinite symmetric sesquilinear form (which is not an inner product!)

h�j iKG WD
i„

2mc2

Z
d3x
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�� P � P�� 

�
(7.25)

is conserved under the time-evolution of the KGE. But because it is not positive-
(semi)definite, we cannot interpret the induced“norm” as a probability.

The prefactor „

2mc2 is chosen such that it has the dimension of a time (because
„

mc
/ � has the dimension of a length). Then the square of the fields (= wave-

functions) has the dimension of one over a volume – which is the conventional
dimension of wavefunctions. The factor 1

2
is chosen to simplify expressions later.

• Compare this to the conserved current for the same phase rotation symmetry that
follows for the Schrödinger field Eq. (7.12) with ı D i and ı � D �i �:
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(7.26)

(Recall that you must sum over the fields  and  �.)

This is the positive-definite probability density you already know from quantummechanics,

�SE.x/ D  
�.x/ .x/ D j .x/j2 � 0 ; (7.27)
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and the ↓ probability current density

EjSE D
i„

2m

�
.r �/ � .r / �

�
: (7.28)

In this context, Noether’s theorem ensures probability conservation:

@�j
�
SE D 0 , @t�SE Cr � EjSE D 0 : (7.29)

5 | Solutions: (for the free Klein-Gordon field)

i | The KG Eq. (7.14) is a wave equation:�
1

c2
@2t � r

2
C
m2c2

„2

�
�.t; Ex/ D 0 (7.30)

! Solution space spanned by plane waves:

�.t; Ex/ D e
i
„
. Ep� Ex�Et/ (7.31)

Plug this ansatz into Eq. (7.30)! Dispersion relation:
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Š
D 0 (7.32)

E D ˙

q
Ep2c2 Cm2c4 (7.33)

• This is the relativistic energy-momentum relation Eq. (5.26).

• ¡! There are two solutions for each 3-momentum Ep, one of which has negative energy
E < 0 (if we interpret the prefactor of t as the energy as usual). This is a consequence
of the quadratic nature of the KGE (as compared to the SE), and therefore a direct
consequence of its relativistic covariance.

• At the time of its inception, the negative energy solutions of the KGE could not be
interpreted properly. This (together with the fact that its conserved “norm” cannot
be interpreted as a probability and it fails to predict the fine-structure of the hydrogen
atom correctly, → below) lead to its dismissal as a relativistic wave equation for quantum
wave functions. It only became clear later that the negative energy solutions herald the
existence of antiparticles. Only in modern ↑ relativistic quantum field theories [where the
KGE reappears as the equation of motion of (free scalar) quantum fields, see Chapter 2
of my script on QFT [19]] this “feature” can be cast into a consistent framework: The
negative energy solutions are interpreted as eigenmodes of antiparticles with positive en-
ergies (and norms). If the particles are charged, their antiparticles have opposite charge;
then the conserved Noether charge Eq. (7.22) is interpreted as charge conservation (and
not probability conservation).

ii | As usual, one can“normalize” the plane wave solutions Eq. (7.31) if one considers a finite
system with volume V D L3. Then one finds the “orthonormal” solution basis of the KGE:
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(7.34a)

(7.34b)

• It is straightforward to check that these states are “orthonormal” with respect to the
Klein-Gordon sesquilinear form Eq. (7.25):

h 
.˛/

Ek
j 
.ˇ/

Ek0
iKG $ ˛ ı˛;ˇ ı Ek; Ek0 with ˛; ˇ 2 f˙g : (7.35)

Note that the .�/ states have negative “norm”.

• The fact that there are“twice as many” linearly independent solutions (two for each
momentum) means that you need“twice as many” parameters to specify a particular
solution (i.e., a linear combination of the plane waves). This corresponds to the fact
that the KGE is of second order in the time derivative, so that you need to provide both
�.t D 0; Ex/ and P�.t D 0; Ex/ to specify a unique solution.
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