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↓ Lecture 13 [23.01.24]

iii | ^ Non-relativistic limit:

Eq. (6.34)

�1
���!

8<: ENE. Nx/ � EE.x/C 1
c
Ev � EB.x/

ENB. Nx/ � EB.x/ � 1
c
Ev � EE.x/

(6.35)

• The interconversion between magnetic and electric fields happens already in linear
order of v=c.

• The separation of the electromagnetic field into“electric” and“magnetic” components
is observer dependent!

• Example: A charge at rest has a non-zero electric field, but a vanishing magnetic field.
The same charge as seen from an inertial system in relative motion gives rise to a
current that is accompanied by a non-vanishing magnetic field perpendicular to the
direction of motion and the electric field. This is a direct consequence of Eq. (6.35):
ENB. Nx/ � �1

c
Ev � EE.x/ ¤ E0.

iv | ^ Special case: Boostƒvx
in x-direction: Eq. (6.34)

Ev D .vx ; 0; 0/
��������!

NEx D Ex ; NEy D 

�
Ey �

v
c
B´
�
; NE´ D 


�
E´ C

v
c
By
�
; (6.36a)

NBx D Bx ; NBy D 

�
By C

v
c
E´
�
; NB´ D 


�
B´ �

v
c
Ey
�
; (6.36b)

(Here the fields in NK on the left-hand side are functions of Nx whereas the fields inK on the
right-hand side are functions of x.)

!

• The field components parallel to the boost remain unchanged.

• The perpendicular components mix and get enhanced by a Lorentz factor 
 > 1.

• Einstein derived this transformation directly (without using gauge fields and tensor
notation) in his 1905 paper“Zur Elektrodynamik bewegter Körper” [9]; you follow this
path in → Problemset 7.

v | Lorentz scalars:

The electric and magnetic field components transform in a complicated way under Lorentz
transformations. Is it possible to combine them into scalar quantities? Thanks to our knowl-
edge of tensor calculus and the field strength tensor, this question is easy to answer:

a | We can construct a scalar by contracting the FST with itself:

F ��F�� D �
�˛��ˇF˛ˇF�� $ 2. EB2 � EE2/ (6.37)

! If j EEj R j EBj is true in one IS, it is true in all IS.

b | We can construct a pseudo scalar by contracting the FST with the DFST:

QF ��F�� D
1
2
"��˛ˇF˛ˇF�� $ �4. EE � EB/ (6.38)

! If EE ? EB is true in one IS, it is true in all IS.
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Some comments:

• Note that QF �� QF�� $ �F ��F�� (use contraction identities for Levi-Civita symbols
to show this, → Problemset 7); i.e., the two quantities above exhaust all elementary
gauge-invariant scalar fields that we can construct (A�A� is of course also a scalar, but
not a gauge-invariant one).

• The combination of Eq. (6.37) and Eq. (6.38) can be used to infer whether inertial
systems exist in which either the electric or magnetic field vanishes. For example: If
QF ��F�� D 0 and F ��F�� > 0, it is possible to find an inertial system where EE D 0
and EB ¤ 0 (but not the other way around). If QF ��F�� ¤ 0 there is no inertial system
in which one of the fields vanishes.

8 | Manifest covariant form of the Maxwell equations:

Using the FST and the DFST, we can write the Maxwell equations manifestly covariant without
using the gauge field and/or fixing a gauge (cf. Eq. (6.19)):

i | The equations we look for must be…

• …manifestly covariant (! tensor equations).

• …linear in the FST or the DFST (the ME are linear in EE and EB).

• …use one 4-divergence @� (the ME are first-order PDEs).

! ^

@� QF
��
D
1

2
"����@�.@�A� � @�A�/ D "

����@�@�A� D 0 (6.39a)

@�F
��
D @�.@

�A� � @�A�/ D @�.@A/ � @2A� (6.39b)

ii | The homogeneous ME Eqs. (6.10a) and (6.10b) must be identically true if the fields are given
in terms of gauge fields. Eq. (6.39a) then suggests that the homogeneous ME are:

@� QF
��
D 0 Homogeneous ME (?) (6.40)

To check this evaluate:

@� QF
��
D
1

2
"����@�F�� (6.41a)

D
1

6
"����

�
@�F�� C @�F�� C @�F��

�
(6.41b)

D
1

2

X
�<�<�

"����
�
@�F�� C @�F�� C @�F��

�
(6.41c)

Here we used that the Levi-Civita symbol is invariant under cyclic permutations of (subsets)
of indices and that the FST (and the Levi-Civita symbol) is antisymmetric in its indices. Note
that for every fixed � there are 3Š D 6 non-vanishing assignments of indices ��� . However,
pairs of terms like "����@�F�� D "����@�F�� are identical, so that only 3 distinct terms
remain. These can be w.l.o.g. written like cyclic permutations as in Eq. (6.41c). Note that for
a fixed index �, the sum contains only one non-vanishing summand.

!

8�<�<� W @�F�� C @�F�� C @�F�� D 0„ ƒ‚ …
↑ Bianchi identity (4 equations)

, 8� W @� QF
��
D 0„ ƒ‚ …

(4 equations)

(6.42)
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It is straightforward to check by hand, using Eq. (6.30), that the four Bianchi identities
correspond to the four homogeneous Maxwell Eqs. (6.10a) and (6.10b). For example:

@1F23 C @2F31 C @3F12 $ �r � EB D 0 , Eq. (6.10a) (6.43)

Details: → Problemset 7

• As shown in Eq. (6.39a), the homogeneous ME are identities if the FST is expressed in
terms of gauge fields.

• By contrast, if the FST is expressed in terms of physical fields EE and EB [as given in
Eq. (6.30)], the equation @� QF �� D 0 becomes a non-trivial constraint on the field
configurations.

iii | ^ Lorenz gauge Eq. (6.23)!

Eq. (6.39b) ) @�F
��
D �@2A� (6.44)

Compare Eq. (6.19) (inhomogeneous ME in Lorenz gauge):

�@2A� D �
4�

c
j� (6.45)

This suggests that the inhomogeneous ME are:

@�F
��
D �

4�

c
j� Inhomogeneous ME (?) (6.46)

It is straightforward to check by hand that these four equations are equivalent to the four
inhomogeneous ME Eqs. (6.10c) and (6.10d) using Eq. (6.30). For example for � D 0:

@1F
01
C @2F

02
C @3F

03 $ �r � EE D �
4�

c
j 0 D �4�� , Eq. (6.10c)

(6.47)

Details: → Problemset 7

• In this form, the continuity equation Eq. (6.24) follows trivially from the antisymmetry
of the FST:

@�j
�
D �

c

4�
@�@�F

��
D 0 (6.48)

• If you express the FST in terms of the gauge field, the inhomogeneousME read (without
fixing a gauge!):

@2A� � @�.@A/ D
4�

c
j� (6.49)

This equation becomes Eq. (6.19) in the Lorenz gauge Eq. (6.23). It is easy to check
that this equation is still gauge symmetric under the transformation Eq. (6.25).

iv | In summary, the 8 (=1+3+1+3=4+4) Maxwell equations can be written in the covariant form:

Homogeneous ME: @� QF
��
D 0

Inhomogeneous ME: @�F
��
D �

4�

c
j�

(6.50a)

(6.50b)
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• ¡! Using Eqs. (6.30) and (6.32), these equations make sense without introducing the
gauge field.

• Note that these equations show that under Lorentz transformations the four homo-
geneous (inhomogeneous) Maxwell equations mix among each other. You show this
explicitly in → Problemset 7 for a boost in ´-direction.

• In particular, this means that the Maxwell equations written in their conventional form
Eq. (6.10) (i.e., as two scalar and two vector equations) remain not invariant under
Lorentz transformations for each equation separately, rather the magnetic Gauss law
mixes with the Maxwell-Faraday law, and the electric Gauss law mixes with Ampère’s
law. This explains why showing the Lorentz covariance of the PDE system Eq. (6.10) is
quite messy and complicated without using the tensor formalism. This is why we say
that its Lorentz covariance is not manifest. By contrast, the Lorentz covariance of the
formulation Eq. (6.50) is manifest as these are tensor equations.

9 | Lagrangian formulation:

Our final goal is to make a connection to the formalism introduced in Section 6.1 and obtain the
Lorentz covariant Maxwell equations as the Euler-Lagrange equations of some action/Lagrangian:

i | It is convenient to construct the Lagrangian as a function of the gauge fields A� because in
this formulation the HME are identically satisfied:

@� QF
��
� 0 ) L D L.A; @A/ (6.51)

! Only the inhomogeneous ME must follow as Euler-Lagrange equations

Note that the counting matches: We have four fields A� and thus four Euler-Lagrange
equations – just as we have four IME: @�F �� D �4�c j

�.

ii | We have the following hints to construct a reasonable Lagrangian density:

• The IME are Lorentz covariant. This can be ensured by a Lagrangian density that is a
Lorentz (pseudo) scalar.

• The Maxwell equations are linear (superposition principle!); thus the Lagrangian must
be quadratic in the fields.

• The IME are gauge invariant. This can be ensured by a Lagrangian density that is gauge
invariant up to a total derivative (here: surface term) which does not affect the equations
of motion.

!Most general form:

L.A; @A/ D a1 F
��F�� C a2 �����QF ��F��„ ƒ‚ …

Surface
term

Ca3 �����QF �� QF��„ ƒ‚ …
/F ��F��

Ca4 A�j
�„ƒ‚…

Gauge inv.
up to surface

term

(6.52)

Details: → Problemset 7

• It is straightforward to check that

QF �� QF�� $ �F ��F�� (6.53)

so that we can drop the a3-term without loss of generality.
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• One can also check that

QF ��F�� D
1

2
"���� .@�A� � @�A�/.@�A� � @�A�/ (6.54a)

D
1

2
"���� .@�A�@�A� C @�A�@�A� � @�A�@�A� � @�A�@�A�/ (6.54b)

D 2"���� .@�A�/.@�A� / (6.54c)

D 2 @�

↑ Chern-Simons 3-form‚ …„ ƒ
"���� .A�@�A� /„ ƒ‚ …

Surface term

(6.54d)

so that the a2-term has no effect on the equations of motion and we can drop it as well.

Note: The a2-term is known as the ↑ � -term and is special because it is topological (it
does not “feel” the geometry of spacetime). This is easy to see: One does not need a
metric tensor to construct it because the contravariant indices of the DFST stem from
the Levi-Civita symbol! Despite being a surface term, such terms are important when
one quantizes the theory and/or when the gauge theory is non-Abelian (like the SU.3/
gauge theory of the strong interaction). Note also that this term is a pseudo scalar, i.e., it
breaks parity symmetry (which we know electrodynamics does not).

• The a4-term is not gauge invariant. However, the continuity equation ensures that it
modifies the Lagrangian only by a surface term under gauge transformations:

QA�j
�
D .A� � @��/j

�
D A�j

�
� .@��/j

�
D A�j

�
� @�.�j

�/„ ƒ‚ …
Surface term

(6.55)

(Here we used the continuity equation @�j� D 0.)

Consequently, the equations of motion must be gauge invariant despite the a4-term.

• It is easy to check that the quadratic Lorentz scalar A�A� is not gauge invariant (not
even up to a surface term); thus it is forbidden.

Note: Coincidentally, it is this term that would give the quantized excitations of the
A-field a mass. Thus if you want massive gauge excitations (like theW ˙- andZ-bosons
of the weak interaction), you must find a way to smuggle the term A�A

� into your
Lagrangian. This is what the ↑ Higgs mechanism achieves.

iii | Thus we propose the
Lagrangian density for Maxwell theory:

L � LMaxwell.A; @A/ D �
1

16�
F��F

��
�
1

c
A�j

� (6.56)

The prefactors have been chosen such that the Euler-Lagrange equations match the IME
(→ next step).

iv | Euler-Lagrange equations:

Details: → Problemset 7

There are four (� D 0; 1; 2; 3) Euler-Lagrange equations:

@L

@A�
� @�

�
@L

@.@�A�/

�
D 0 (6.57)
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Straightforward calculations yield:

@L

@A�
D �

1

c
j� and

@L

@.@�A�/
$

1

4�
F �� (6.58)

Hence the Euler-Lagrange equations are exactly the inhomogeneous Maxwell equations:

@�F
��
D �

4�

c
j� (6.59)

! Eq. (6.56) is the correct Lagrangian density for Maxwell theory.

10 | Coordinate-free notation:

Remember the coordinate-free concepts introduced in Chapter 3: All tensor fields T IJ are the
chart-dependent components of chart-independent objects T (the actual tensor fields). This
formalism allows us to reformulate the Maxwell equations in the language of differential geometry,
without using coordinates altogether:

i | First, write gauge field

A WD A�dx� (6.60)

and the field strength coordinate-free:

F WD F�� dx� ˝ dx� D
1

2
F�� Œdx� ˝ dx� � dx� ˝ dx��„ ƒ‚ …

DWdx�^dx� (“wedge product”)

: (6.61)

We say that A is a 1-form and F is a 2-form.

ii | We can evaluate ↑ exterior derivative of the gauge field:

dA def
D dA� ^ dx� D @�A� dx� ^ dx� D

1

2
F�� dx� ^ dx� D F (6.62)

The exterior derivative d maps k-forms onto k C 1-forms.

iii | Now evaluate the exterior derivative of the field strength:

dF def
D
1

2
@�F�� dx� ^ dx� ^ dx� (6.63a)

D
1

6

�
@�F�� C @�F�� C @�F��

�
dx� ^ dx� ^ dx� (6.63b)

D
1

2

X
�<�<�

�
@�F�� C @�F�� C @�F��

�
dx� ^ dx� ^ dx� (6.63c)

(Here we used the antisymmetry of the wedge product in all factors.)

Thus we find:

dF D 0 , @�F�� C @�F�� C @�F�� D 0
6.42
, @� QF

��
D 0 (6.64)

If the field strength is expressed in terms of the gauge field, the homogeneous Maxwell
equations @� QF �� D 0 are identities. In the coordinate-free notation of differential geometry,
this identity follows from the fact that applying an exterior derivative twice produces the
zero field:

dF D ddA D 0 since d2 D 0 (6.65)

The relation dF D 0 is known as a ↑ Bianchi identity.
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iv | Define the linear ↑ Hodge star operator (here for a 4-dimensional Minkowski manifold):

?.dx�/ WD
1

3Š
"���� .dx

�
^ dx� ^ dx� / (6.66a)

?.dx� ^ dx�/ WD
1

2Š
"���� .dx

�
^ dx� / (6.66b)

?.dx� ^ dx� ^ dx�/ WD
1

1Š
"���� .dx

� / (6.66c)

Note that the definition makes use of the metric tensor via pulling up/down indices of the
Levi-Civita symbols. This implies in particular that any equation that uses the Hodge star
depends on the geometry of spacetime (here flat Minkowski space).

v | The dual field-strength tensor (DFST) is the Hodge dual of the field-strength tensor (FST):

?F D
1

2
F�� ? .dx� ^ dx�/ (6.67a)

D
1

4
F��"

��
�� .dx

�
^ dx� / (6.67b)

D
1

2
QF�� .dx� ^ dx� / � QF (6.67c)

Beware: The Hodge star ? is not a multiplication symbol (as the notation on the right-hand
side might suggest) but a linear operator that acts on the differential form to the right.

vi | The Hodge dual of the exterior derivative of the DFST yields:

?d.?F / D
1

4
"����@�F�� ? .dx

�
^ dx� ^ dx� / (6.68a)

D
1

4
"����"

���
˛@�F

�� .dx˛/ (6.68b)

D
1

2
.ı����˛ � ı

�
� ��˛/@�F

�� .dx˛/ (6.68c)

D ��˛@�F
�� .dx˛/ (6.68d)

6.50b
D

4�

c
j˛ .dx˛/ (6.68e)

Here we used a contraction identity for Levi-Civita symbols (over the two red pairs of indices).

vii | This motivates the definition of the coordinate-free current:

J WD
4�

c
j� dx� (6.69)

viii | In conclusion, the Maxwell equations can be written without using a coordinate system as:

Homogeneous ME: dF D 0

Inhomogeneous ME: ?d.?F / D J

(6.70a)

(6.70b)

• If one uses that .?/2 D C1 �1 on odd differential forms (d.?F / is a 3-form), Eq. (6.70b)
can alternatively be written as d.?F / D ?J . If one then defines the current not as
a 1-form but as the dual 3-form, J WD 4�

c
j� ? dx�, the inhomogeneous Maxwell

equations take their simplest form: d.?F / D J .

• Eq. (6.70) is the most general and elegant formulation of the Maxwell equations. In
this form, the equations remain valid even in general relativity on curved space
times. Then the Minkowski metric used in the definition of the Hodge star ? (to pull
the indices of the Levi-Civita symbols up/down) must be replaced by the dynamic,
potentially curved metric of general relativity.
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6.3. Noether theorem and the energy-momentum tensor

In the following, we consider first a generic (classical, relativistic) field theory, and specialize to electrody-
namics later. This is to emphasize thatmost of the results in this chapter are not specific to electrodynamics.

Details: Chapter 1 of my QFT script [19]

1 | ^ General transformation of field � 7! �0:

x 7! x0
D x0.x/ and �.x/ 7! �0.x0/ D F .�.x// (6.71)

Two effects: coordinates and (values of the) field transformed
These are active transformations that change physics. x0 D x0.x/ is not a (passive) coordinate
transformation; the frame of reference remains fixed in the following!

→ Example 1: Homogeneous Lorentz transformations

The (active) homogeneous Lorentz transformation of a vector field A� reads

x� 7! x0�
D ƒ��x

� and A�.x/ 7! A0
�.x

0/ D ƒ �
� A�.x/„ ƒ‚ …

F .A�.x//

(6.72)

whereas the Lorentz transformation of a scalar field � reads

x� 7! x0�
D ƒ��x

� and �.x/ 7! �0.x0/ D �.x/„ƒ‚…
F .�.x//

: (6.73)

2 | ^ Infinitesimal transformations (IT) (jwaj � 1):

x0�
D x� C wa ı

ax�.x/ and �0.x0/ D �.x/C wa ı
a�.x/ (6.74)

Here, wa denotes infinitesimal parameters of the transformation (sum over a implied!) and we
label different transformations by the labels a.

→ Example 2: Homogeneous Lorentz transformations

Infinitesimal homogeneous Lorentz transformations take the form (→ Problemset 4)

ƒw D exp
�
�
i

2
w˛ˇJ˛ˇ

�
jw˛ˇ j�1
� 1 �

i

2
w˛ˇJ˛ˇ (6.75)

(note that the a D ˛ˇ are labels of generators that are not required to be tensor indices)

with generators

.J˛ˇ /�� D i
�
�˛�ıˇ� � ı

˛
� �
ˇ�
�
: (6.76)

With this it follows for the coordinates

w˛ˇ ı
˛ˇx� D x0�

� x� D �
i

2
w˛ˇ .J

˛ˇ /��x
�
D w˛ˇ

1

2

�
�˛�ıˇ� � ı

˛
� �
ˇ�
�
x�„ ƒ‚ …

ı˛ˇx�

(6.77)
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so that

ı˛ˇx� D
1

2

�
�˛�xˇ � �ˇ�x˛

�
: (6.78)

Similar arguments yield ı˛ˇA� D 1
2

�
�˛�Aˇ � �ˇ�A˛

�
for a vector field and ı˛ˇ� D 0 for

a scalar field.

3 | Generator of IT:

ıw�.x/ WD �
0.x/ � �.x/ � �iwaGa�.x/ (6.79)

With (omit first line and refer to previous equation)

�0.x0/ D �.x/C wa ıa�.x/ (6.80a)

D �.x0/ � wa.ıax
�/@��.x

0/C waıa�.x
0/CO.w2/ (6.80b)

(Here we replaced x by x0 in the last term because this is a O.w2/modification.)

it follows (replace x0 by x; these are just labels!)

iGa� D .ıax
�/@�� � ıa� (6.81)

This function describes the infinitesimal change of the field at the same point.

→ Example 3: Translations

i | x0� WD x� C w� � x� C w�ı�x
� with ı�x� D ı

�
�

ii | ı�� D 0 (This is true for scalar and vector fields.)

iii | iG�� D ı
�
�@�� � 0 and therefore

G� D �i@� � P� (6.82)

! The“momentum operator” generates translations.

4 | So far the continuous transformations � 7! �0 were arbitrary.

^ Continuous transformation [with infinitesimal form Eq. (6.74)] which is a

Symmetry of the action W, SŒ�� D SŒ�0� (6.83)

In principle, the action can vary by a surface term – equivalently, the Lagrangian density L can vary
by a 4-divergence @�K�.�; x/ – under the symmetry transformation (because such modifications
do not affect the equations of motion). Here we consider for simplicity only the case where no such
terms exist and the action is strictly invariant.

Then one can prove (see Chapter 1 of my QFT script [19] or Refs. [1, 77]):
�
�!
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5 | ⁂ Noether’s (first) theorem:

For solutions � of the equations of motion, the ⁂ (canonical) (Noether) currents

j�a
�
D

�
@L

@.@��/
@�� � ı

�
� L

�
ıax

�
�

@L

@.@��/
ıa� (6.84)

(associated to the infinitesimal transformations of coordinates ıax� and fields ıa�)

satisfy the continuity equations

8a W @�j
�
a D 0 : (6.85)

This means there is one conserved current j�a for each generator a of the continuous symmetry.

6 | Conserved charge:

The currents Eq. (6.84) are called“conserved” because they describe the flow of a conserved…

Qa WD

Z
Space

dD�1x j 0a ⁂ (Noether) charge (6.86)

There is one conserved chargeQa for each generator a of the continuous symmetry.

Indeed:

1

c

dQa
dt
D

Z
Space

dD�1x @0j
0
a

6.85
D �

Z
Space

dD�1x @kj
k
a

Gauss
D �

Z
Surface

d�kj ka D 0 (6.87)

Here we assume that j ka � 0 on the spatial boundaries—typically at infinity, i.e., the universe is
closed. k D 1; 2; 3 denotes the spatial coordinates.

→ Note 6.1

The current Eq. (6.84) is called canonical current because it is not unique:

Qj�a WD j
�
a C @�B

��
a with B��a D �B

��
a arbitrary ) @� Qj

�
a D 0 (6.88)

This is particularly important for the energy-momentum tensor (→ below).

6.3.1. Application: The Energy-Momentum Tensor (EMT)

Details: → Problemset 7

7 | ^ Infinitesimal spacetime translations:

x0�
D x� C w� ) ı�x

�
D ı�� and ı�� D 0 (6.89)

& Translation-invariant action: S 0 D S (This includes translations in time!)

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



SR → RELATIVISTIC FIELD THEORIES I: ELECTRODYNAMICS

166
PAGE

8 | Conserved currents: Eq. (6.84)!

‚�� WD

�
@L

@.@��/
@�� � ı

�
� L

�
ı�x

�„ƒ‚…
ı

�
�

D
@L

@.@��/
@�� � ı

�
� L (6.90)

Note that the generator index a is in this case a proper Lorentz index � so that we can pull it up,
‚�� D ���‚

�
�, and obtain:

⁂ (Canonical) Energy-Momentum Tensor:

‚�� D
@L

@.@��/
@�� � ���L (6.91)

with

@�‚
��
D 0 and four conserved charges P � WD

1

c

Z
d3x ‚0� : (6.92)

• Note that these quantities are only conserved for solutions of the Euler-Lagrange equations.

• P � is a 4-vector (show this!). Note that this is a non-trivial statement because d3x is not a
Lorentz scalar and‚0� not a 4-vector.

• The prefactor 1=c ensures that P 0 has the same dimension as a conventional 4-momentum
with p0 D E=c; note that ‚00 has the dimension of an energy density because L has this
dimension.

9 | Interpretation:

i | Energy (� D 0):

cP 0 D

Z
d3x ‚00 D

Z
d3x

�
@L

@ P�
P� �L

�
„ ƒ‚ …
Hamiltonian density

D

Z
d3xH .�; �/„ ƒ‚ …
Hamiltonian

D H (6.93)

! The Hamiltonian is the component of a 4-vector and not Lorentz invariant!

By contrast, the Lagrangian is Lorentz invariant (for relativistic field theories).

ii | Kinetic momentum (� D i):

P i D

Z
d3x ‚0i D

Z
d3x

@L

@ P�
.�@i�/ D �

Z
d3x �@i� (6.94)

� is the canonical momentum conjugate to the field �.

10 | The canonical EMT of electrodynamics:

i | ^ Free (j� D 0) electromagnetic field: Lem D �
1
16�

F��F
��

! Invariant under spacetime translations
Indeed, with x0� D x� C w� and the field transformation A0

�.x/ WD A�.x � w/ it is

SemŒA
0� D

Z
d4xLem.A

0.x/; @A0.x// D

Z
d4xLem.A.x � w/; @A.x � w// (6.95a)

D

Z
d4yLem.A.y/; @A.y// D SemŒA� (6.95b)

where we integrate over the full Minkowski spacetime R1;3, substituted y� D x� �w� and
used d4x D d4y .

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART



SR → RELATIVISTIC FIELD THEORIES I: ELECTRODYNAMICS

167
PAGE

ii | ! Canonical EMT conserved: @�‚
��
em D 0 with

‚��em D
@Lem

@.@�A� /
@�A� � �

��Lem
6.58
D

1

4�
F ��@�A� C

���

16�
F��F

�� (6.96)

Note that because the gauge field has multiple components A�, there is now an additional
summation in the first term over these components (marked indices). This follows directly
from a generalization of the proof of Noether’s theorem for fields with multiple components.

Details: → Problemset 7

iii | Problems:

The canonical EMT‚��em has two problematic properties:

• Because of the term @�A� , ‚
��
em is gauge-dependent!

This is problematic because it means that we cannot hope to identify physical quantities
like the energy density or the momentum density of the electromagnetic field with (the
components) of this tensor.

• The canonical EMT is non-symmetric: ‚��em ¤ ‚
��
em !

In general relativity, we will find that the right-hand side of the → Einstein field
equations (which determine how spacetime curves and evolves)

R�� �
1

2
Rg�� Cƒg�� D �T�� (6.97)

is given by the → Hilbert energy-momentum tensor

T �� D
2
p
g

ı.LMatter/

ıg��
(6.98)

where LMatter describes the Lagrangian density of all fields in the universe (except
the metric tensor field). For example, LMatter contains the Maxwell Lagrangian Lem

(“matter” here includes every degree of freedom that has energy & momentum, i.e.,
also electromagnetic radiation).

Note that T �� is symmetric because the metric g�� is. Hence it cannot be identified
with the canonical EMT‚�� in general (here for the example of Maxwell theory).

¡! These problems are not specific to electrodynamics but typically affect all theories that are
gauge theories and/or include non-scalar fields.

! How to solve these issues?

6.3.2. The Belinfante-Rosenfeld energy-momentum tensor (BRT)

We consider again first a generic field theory, and specialize to electrodynamics later.

Details: → Problemset 7

11 | Remember (Note 6.1) that the canonical EMT is not the only conserved EMT because

Q‚�� WD ‚�� C @�K
��� with K��� D �K��� (6.99)

yields another EMT Q‚�� for any suitable tensorK��� .

! Idea: Find K��� such that Q‚�� D Q‚�� is symmetric (and hopefully gauge-invariant).
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12 | Let us assume that our theory is also invariant under homogeneous Lorentz transformations (in
addition to the spacetime translations needed for the conservation of the EMT).

^ Generators of homogeneous LTs for coordinates:

Eq. (6.78)! ı˛ˇx� D
1

2

�
�˛�xˇ � �ˇ�x˛

�
: (6.100)

Assume that fields transform as ı˛ˇ�.

For the following arguments, we do not need to fix whether our fields transform as scalar, vector,
or even → spinor fields.

Eq. (6.84) & Eq. (6.91) & Eq. (6.100)!

Noether currents for homogeneous LTs:

L�˛ˇ $
1

2

�
‚�˛xˇ �‚�ˇx˛

�
C
1

2
S�˛ˇ (6.101)

with

⁂ Spin current: S�˛ˇ WD �2
@L

@.@��/
ı˛ˇ� (6.102)

which satisfies S�˛ˇ D �S�ˇ˛.

(This follows because ı˛ˇ� D �ıˇ˛� as the generators of homogeneous LTs are antisymmetric.)

The continuity equation reads

@�L
�˛ˇ
D 0 : (6.103)

Because homogeneous LTs describe rotations in space and time, the conserved current L�˛ˇ can
be identified as ↑ (canonical) angular momentum current. The first part in Eq. (6.101) corresponds to
the (canonical) orbital angular momentum while the second part S�˛ˇ encodes the intrinsic angular
momentum of the field (= its ↓ spin). This immediately explains why for a scalar field with ı˛ˇ� D 0,
the spin current vanishes S�˛ˇ D 0.

13 | Eq. (6.92) & Eq. (6.103)!

@�S
�˛ˇ $ ‚˛ˇ �‚ˇ˛ (6.104)

This means that a non-vanishing divergence in the spin current is responsible for the “non-
symmetry” of the canonical EMT!

14 | Now define

K��� WD �
1

2

�
S��� C S��� � S���

�
(6.105)

! K��� D �K��� (This follows from S�˛ˇ D �S�ˇ˛ .)

With this we can finally define the…

⁂ Belinfante-Rosenfeld energy-momentum tensor (BRT):

T ��D ‚�� C @�K
���
WD ‚�� � 1

2
@�
�
S��� C S��� � S���

�
(6.106)
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15 | It remains to be shown that T �� is always symmetric:

T �� � T ��
6.104
D 0 , (6.107)

It can be rigorously shown that the BRT is identical to the Hilbert EMT that shows up ingeneral
relativity as the source of gravity [78]. This is why the BRT gets its own symbol T �� .

NICOLAI LANG • INSTITUTE FOR THEORETICAL PHYSICS III • UNIVERSITY OF STUTTGART


