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Problem 8.1: Bound states of a spherical potential well [ Oral ] ( 3 pts. )

↪→ ID: ex_bound_states_spherical_potential_well:qm2122

Learning objective

Here you derive the bound states of a spherically symmetric potential well. To do so, you exploit

the rotation symmetry of the problem and show that the radial solutions are given by spherical Bessel

functions. You explicitly derive the transcendental equation that determines the eigenenergies for bound

states with angular momentum l = 0.

Consider the Hamiltonian of a particle in three dimensions

H =
p2

2m
+ V (r) (1)

with the spherically symmetric and piecewise constant potential

V (r) = V (r) =

{
0 r > R

V0 r ≤ R
(2)

with r = |r|, R > 0 the radius of the potential well and V0 < 0 the potential depth.

Your goal is to find the bound states and eigenenergies of this system and the conditions that are

necessary for their existence.

a) Make the separation ansatz Ψ(r) = Rl(r) · Ylm(θ, ϕ) with spherical harmonics Ylm and show

that the eigenvalue problem reduces to[
ρ2∂2ρ + 2ρ∂ρ + ρ2 − l(l + 1)

]
R̃l(ρ) = 0 (3)

with ρ ≡ Krr and R̃l(ρ) ≡ Rl(r) whereKr ≡
√

2m(E−V (r))

h̄2 .

b) Write down the general solution of the radial problem in the two regions r > R and r ≤ R for

a given angular momentum l and formulate the continuity and boundary conditions that the

eigenstates must satisfy.

Hint: Use that the solutions of the differential equation[
x2∂2

x + 2x∂x + x2 − l(l + 1)
]
y(x) = 0 (4)

are given by the spherical Bessel functions

jl(x) = (−x)l
(
1

x
∂x

)l
sin(x)

x
and yl(x) = −(−x)l

(
1

x
∂x

)l
cos(x)

x
(5)

for l ∈ N0. (The functions yl are sometimes denoted nl and referred to as spherical Neumann functions.)

Write the eigenstates in terms of these functions.
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c) Consider the simplest case for l = 0. Find explicit expressions for the bound states and derive a

transcendental equation to determine their eigenenergies. At which potential depth V0 appears
the first bound state?

Hint: Use your knowledge of the one-dimensional potential well to analyze the transcendental equation.

Problem 8.2: Bound state of a pseudo potential in three dimensions [ Oral ] ( 3 pts. )

↪→ ID: ex_bound_state_pseudo_potential_three_dimensions:qm2122

Learning objective

In a previous exercise you derived the bound state of a delta potential in one dimension. Here you show

that a delta potential in three dimensions leads to inconsistencies. To allow for bound state solutions

that are singular at the origin, the delta potential must be modified to a so called pseudo potential. Your

goal is then to derive the bound state and its energy of this pseudo potential.

We are interested in the bound states of the Hamiltonian in three dimensions

H̃ =
p2

2m
+ Ṽ (r) with Ṽ (r) = g δ(3)(r) ∂rr . (6)

Here δ(3)(r) is the delta distribution in three dimensions and r = |r|; Ṽ (r) is known as a pseudo

potential (note that Ṽ acts as a differential operator on the wave function) with coupling strength

g ∈ R.

a) To understand the necessity for Ṽ , consider instead the true delta potential V (r) = g δ(3)(r) in
three dimensions (and the corresponding Hamiltonian H). Show that solving for bound states

leads to inconsistencies.

What happens in one dimension? Compare your results to the bound state energy derived in

Problem 5.2. What is the condition on the coupling g for the bound state to exist?

Hint: Fourier transform the stationary Schrödinger equation and solve it. Then invert the Fourier

transform to find an expression for the candidate bound state and set r = 0 to derive an equation for the

eigenenergy.

b) Show that the modification V 7→ Ṽ does not alter the action ofH on non-singular wave functions

ψ(r), i.e., show that Hψ = H̃ψ.

c) Show that the pseudo potential Hamiltonian H̃ has a bound state and determine its energy as a

function of g and m. Comment on the sign of the coupling g that is necessary for the bound

state to exist and compare this to the result in one dimension (for the true delta potential).

Hint: Use that the Green’s function of the Helmholtz equation, i.e., the solution of the differential equation[
∆+ k2

]
G(r) = −δ(3)(r) (7)

with the boundary condition lim|r|→∞G(r) = 0, is given by G(r) = eikr

4πr with r = |r|.
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Problem 8.3: Runge-Lenz vector [ Written ] ( 5 pts. )

↪→ ID: ex_runge_lenz_vector:qm2122

Learning objective

You have learned that H , L2, and Lz are conserved quantities of a particle in a three-dimensional,

rotational symmetric potential. In this exercise, you show that if the potential behaves as V (r) ∝ 1
r ,

there is an additional conserved quantity M2 where M is the quantized Runge-Lenz vector.

In classical mechanics, Kepler problems1 feature a conserved quantity (“integral of motion”) called

the Runge-Lenz vector Mcl. The latter lies within the plane of motion and is parallel to the major

axis of the elliptical orbit. Classically one finds

Mcl =
1

me2
L× p+

q

q
with the Hamiltonian Hcl =

p2

2m
− e2

q
(8)

where p and q = ‖q‖ are relative momenta and coordinates of the two constituents. If the theory is

quantized, p and q become operators with canonical commutation relations: [qi, pj] = ih̄δij . This

yields the Hamiltonian of the Hydrogen atom known from the lecture:

H =
p2

2m
− e2

q
. (9)

There is, however, a subtlety in quantizing the Runge-Lenz vector Mcl: Simply replacing p, L and

q by operators in Mcl yields a non-Hermitian operator,M †
cl 6= Mcl (Why?). This clashes with the

requirement of a measurable conserved quantity.

Thus one defines the symmetrized version

M :=
1

2me2
(L× p− p×L) +

q

q
(10)

of the Runge-Lenz vector (operator) with M † = M (Why?) and square

M 2 =
2

me4
H

(
L2 + h̄21

)
+ 1 . (11)

a) Show the following commutation relations:

M ·L = 0 (12a)[
L2,M 2

]
= 0 (12b)[

Lz,M
2
]

= 0 (12c)

[Li,Mj] = ih̄ εijkMk (12d)

[H,M ] = 0 (12e)

In conclusion, we found thatH ,L2, Lz , andM
2 define a set of pairwise commuting observables,

i.e., there is a basis in which all four operators are diagonal.

Hints: The following may be useful:

1Two bodies interacting via a radially symmetric inverse square-law force. For instance: planetary motion ruled by

gravitation, the Hydrogen atom with the Coulomb force, etc.
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• Write (v ×w)i = εijkvjwk in terms of the Levi-Civita symbol εijk.

• Use the relation εijkεilm = δjlδkm − δjmδkl where Einstein notation is used.

• Use that [Li, Vj ] = ih̄εijk Vk if V is a vector operator.

• Derive and use the commutator [1/q, pk] = −ih̄ qk
q3
.

∗b) Desperately looking for more commutators to evaluate? Then show that

[Mi,Mj] = − 2ih̄

me4
εijkHLk . (13)

Hint: Prove and use the relation (L× p)j = −(p×L)j + 2ih̄pj . Relations derived in a) and given in

the previous hint may also be useful.
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