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Problem 10.1: Operators in position space [ Oral ] ( 3 pts. )

↪→ ID: ex_operators_position_space:qm2122

Learning objective

In this exercise we study how operators act on states in position space.

a) Consider a self-adjoint operator A = A†. Show that in position space

〈x|A|ψ〉 ≡ Aψ(x) =

∫
dy A(x, y) ψ(y) (1)

with A(x, y) = 〈x|A|y〉.
b) Show that the matrix elements of the position operator X are given by

〈x|X|y〉 = δ(x− y) x. (2)

c) Consider the operator

A = λ−H0 (3)

with λ ∈ C and

H0 =
p2

2m
. (4)

Let G = A−1 = (λ−H0)
−1

be the inverse operator to A. Show that G(x, y) = 〈x|G|y〉 is the
Green’s function of A.
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Problem 10.2: The Born series [ Written ] ( 3 pts. )

↪→ ID: ex_born_series:qm2122

Learning objective

In this exercise, we study the Born series and derive the general expression for the expansions in real and

Fourier space. Each term in the expansion can be graphically expressed with strict rules how to relate

the diagram with the mathematical expression. This is an example of the famous Feynman diagrams.

a) Consider the Lippmann-Schwinger equation

ψk0(r) = eik0·r +

∫
R3

d3r′G(r − r′)V (r′)ψk0(r
′) . (5)

Take the Ansatz

ψk(r) =
∞∑
n=0

δψ
(n)
k (r) , δψ

(0)
k (r) = ψ0(r) = eik·r (6)

(where (n) denotes the order of the potential V ) for the solution of the Lippmann-Schwinger

equation. Assuming the ansatz converges, derive (e.g. by induction) the equivalent representa-

tion of the solution

ψk(r) = ψ0(r) +
∞∑
n=1

Xnψ0(r) . (7)

What is the operator X and its action on a wave function Xψ?

b) Find X in momentum space and compare it to its real space representation.

c) Scattering processes are typically depicted as Feynman diagrams. Below you can see such a

diagram. Explain the meaning of each part of the diagram and give a way to translate between

diagrams and the scattering series (7), the so called Feynman rules.
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Problem 10.3: Scattering at the Yukawa potential [ Oral ] ( 3 pts. )

↪→ ID: ex_scattering_yukawa_potential:qm2122

Learning objective

The goal of this exercise is to determine the scattering amplitude within the Born approximation for the

Yukawa Potential. The Yukawa potential describes the interaction between charged particles in a theory

where photons have a mass µ and the Coulomb potential is recovered for vanishing photon mass µ → 0.
Note that for the scattering amplitude something strange happens in this limit as the Coulomb potential

is a long-range interaction.

a) The Yukawa potential is given by

V (r) = g
exp(−µr)

r
. (8)

Calculate the scattering amplitude in the first order Born approximation.

b) Show that for the case µ→ 0 the scattering cross section of the Yukawa potential becomes the

scattering cross section of Rutherford scattering

dσ

dΩ
=

g2

8E2 sin4
(
Θ
2

) . (9)

Here Θ denotes the deflection angle of the scattering process.

c) For a generic potential V (r), derive the general expression for the second order contribution to

the scattering amplitude and express it by the Fourier components of V .

∗d) Determine the scattering amplitude in the second order Born approximation for the Yukawa

potential.

Hint: Bring the scattering amplitude to the form

f
(2)
k (k′) ∝

∫
d3q

1

(q − k)2 + µ2

1

k2 − q2 + iδ

1

(k′ − q)2 + µ2
.

Then you can use the relation∫ 1

−1
dz

2

[(a+ b) + z(a− b)]2
=

1

ab

with a = (q − k)2 + µ2 and b = (q − k′)2 + µ2 to simplify the q-integration.
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Problem 10.4: Exact low energy scattering amplitude∗ [ Written ] ( 4 pts. )

↪→ ID: ex_exact_low_energy_scattering_amplitude:qm2122

Learning objective

The low energy scattering for all short range interactions is determined by a single parameter: the s-wave

scattering length. Here we study a potential which reproduces this low energy scattering amplitude and

can be solved exactly.

The scattering process at the potential V with

V ψ(r) = α(r)

∫
d3r′ α(r′)ψ(r′) (10)

can be solved exactly via the Lippmann-Schwinger equation.

a) Show that the ansatz

ψk(r) = eik·r + λk ·
∫

d3r′G(r − r′)α(r′) (11)

with some scalar λk solves the Lippmann-Schwinger equation; find an expression for λk.

What is the scattering amplitude fk(Ω)?

b) Now we choose

α(r) = g · e
−κr

r
(12)

with r = |r| and κ > 0.

In the previous subtask, the expression

bk =

∫
d3r α(r)

∫
d3r′G(r − r′)α(r′) (13)

emerged.

Calculate bk for our choice of α(r) using a mathematics program (e.g. Mathematica1).

Hint: Express α(r) in terms of the Fourier coefficients α̃(q) and use the Green’s function in momentum

space

G̃(q) =
1

E − h̄2q2

2m + iε
(14)

with a small ε > 0.

c) Find bk using the residue theorem.

d) Show that for our choice of α(r) and low energies (k → 0), the scattering amplitude takes the

form

fk(Ω) = − 1
1
as

+ ik
. (15)

Calculate the scattering length as.

1A free cloud version can be found at https://www.wolframcloud.com/.
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