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Problem 7.1: Cooper instability as a two-particle problem [Written | 12 pt(s) ]

ID: ex_cooper_pairs:qft25

Learning objective

The Cooper instability is a fundamental mechanism behind the transition from the normal to the

superconducting phase. In 1956, Cooper studied how it can be energetically favorable for two electrons to

pair up in states above the Fermi surface rather than occupying states at the Fermi level. This destabilizes

the Fermi surface and thereby initiates a phase transition to a new, superconducting, ground state.

In the lecture as well as in Problem 7.2 you will treat the Cooper instability more formally within the

framework of many body physics. However, to understand how an attractive electron-electron interaction

can destabilize the Fermi-surface we will first treat the problem from a two-particle perspective.

We study a two-body problem with electrons, j ∈ {1, 2}, at positions rj ∈ Rd with spins σj ∈ {↑, ↓}.
The corresponding Schrödinger equation is given by[

− 1

2m

(
∇2

r1
+∇2

r2

)
+ V (r1 − r2)

]
Ψσ1,σ2 (r1, r2) = EΨσ1,σ2 (r1, r2) . (1)

a) As a first step, transform Eq. (1) into relative, r = r1−r2, and center-of-mass,R = (r1 + r2)/2, 2pt(s)

coordinates. Use Ψσ1,σ2 (r1, r2) = Ψ̃σ1,σ2(r,R)

b) Go to Fourier space, Ψ̃σ1,σ2(r,R) =
∑

k,K eiK·Reik·rφσ1,σ2(k,K), to bring Eq. (1) to the form 2pt(s)

(2εk + EK)φσ1,σ2(k,K) +
∑
k′

Vk−k′φσ1,σ2 (k
′,K) = Eφσ1,σ2(k,K), (2)

where Vq is the Fourier transform of V (r). Show that the state with lowest energy hasK = 0.
What does this mean in terms of the momenta of the two individual electrons? From now on,

we will only keep theK = 0 component.

c) To connect better to the notation that will be introduced in the lecture, let us define∆σ1,σ2(k) := 2pt(s)

(E − 2εk)φσ1,σ2(k, 0). Rewrite the Schrödinger equation in Eq. (2) in terms of ∆σ1,σ2(k). As
is common, we separate ∆σ1,σ2(k) into the singlet component, ψ0(k), and the three triplet

components, d(k) = (d1(k), d2(k), d3(k))
T
according to

∆σ1,σ2(k) = ψ0(k) (iσ̂y)σ1,σ2
+

3∑
j=1

dj(k) (iσ̂yσ̂j)σ1,σ2
, (3)

where σ̂j, j = 0, 1, 2, 3, are Pauli matrices. For electrons, the components must fulfill

ψ0(k) = ψ0(−k), d(k) = −d(−k). (4)

Why?
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d) By plugging Eq. (3) into the Schrödinger equation that you previously expressed in terms of ∆, 2pt(s)

show that it decays into four separate equations for singlet and triplet components. We now

simplify by focusing on

V (k − k′) =

{
−V0, if |εk − EF | < Λ and |εk′ − EF | < Λ,

0, otherwise ,
(5)

with V0 > 0 (purely attractive interaction). HereEF is the Fermi energy andΛ a cutoff (physically

related to the Debye energy, see lecture). Convince yourself that your equations for d imply

d = 0 due to Eq. (4).

e) For the remaining singlet component, let us take 2pt(s)

ψ0(k) =

{
ψ0, if |εk − EF | < Λ

0, otherwise.
(6)

By introducing the density of states ρ(ε) (per spin) rewrite the equation for singlet pairing as

ψ0 = V0ψ0

∫ EF+Λ

EF−Λ

dε
ρ(ε)

2ε− E
. (7)

f) Finally we are ready to study the physical consequences of the calculations above. Assume 2pt(s)

that there are many other additional particles in the Fermi sea and that Λ � EF . We, thus,

can approximate the (effective) density of states in Eq. (7) as ρ(ε) ∼ ρ0Θ(ε− EF ). Note that
the Θ-function takes care of the fact that the states below EF are occupied by other electrons

already and, hence, unavailable. Compute the binding energy δE = E − 2EF and show that

there are states with δE < 0 for arbitrarily small attractive interactions V0 > 0. What does δE
correspond to and what are the physical consequences of δE < 0?

Problem 7.2: Cooper Instability from perturbation theory [Oral | 6 pt(s) ]

ID: ex_cooper_instability:qft25

Learning objective

In Problem 7.1, you saw how even a weak attractive interaction can destabilize the Fermi surface,

signaling the onset of superconductivity. In this exercise, we return to the framework of many-body field

theory—moving beyond solving the two-particle Schrödinger equation—to study this phase transition in

greater depth. Specifically, you will calculate the scattering vertex amplitude for Cooper pairs. From the

divergence of this amplitude, you will determine the critical temperature below for which the system

enters the superconducting phase.

We start by considering electrons, with opposite mommentum and spin, scattering once or multiple

times through an effective interaction Veff (iΩm,q) close to the Fermi Surface. These scatterings

can be expressed via the following diagrams, with the four-momentum notation k̃ = (iωn,k),
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Ωm and ωn are bosonic and fermionic Matsubara frequencies, respectively. This series is already

expressed in terms of the dominant diagrams contributing to the formation of Cooper Pairs (Ladder

Diagrams).

a) The series can also be expressed in a compact form in terms of a scattering vertex amplitude V as 2pt(s)

Determine the form of V diagramatically and algebraically. For the latter, you can adopt a

point-like attractive interaction (V > 0) given by

Veff (iΩm,q) =

{
−V for |iΩm| < ωD

0 for |iΩm| > ωD

, (8)

up to a cutoff given by the Debye energy ωD. This implies that the electrons will interact in an

energy range of 2ωD around the Fermi Surface.

b) Show that the denominator of the algebraic expression of V can be rewritten as 2pt(s)

I = 1− 1

2
V ρ (εF)

∫ ωD

0

dξ

ξ
tanh

ξ

2kBTc
.

Identify the condition for the divergence of V . What is the physical meaning of this instability?

Hint: For the first part of the exercise, remember that the density of states can be approximated to

ρ (ξ) ≈ ρ (εF ) in this case.
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c) Finally, show that TC is given explicitly by 2pt(s)

Tc =
eγ

π
2ωD exp

(
− 2

V ρ (EF)

)
.

Hint: You may need the following integral∫ ∞

0

lnx

cosh2 x
dx = − ln

4eγ

π
, (9)

where γ = 0.5772... is the Euler-Mascheroni constant. Also notice that TC for superconductors is

typically small compared to the Debye temperature ωD/kB .
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