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Problem 6.1: Self-energy diagram in fermi liquid theory [Oral | 6 pt(s) ]

ID: ex_self_energy_fermi_liquid:qft25

Learning objective

In this exercise you will investigate one of the lowest-order diagrams that contributes to the imaginary

part of the fermionic self-energy. This is particularly important in Fermi Liquid theory, for example,

where the inverse of the imaginary part of the self-energy is related to the lifetime of quasiparticles.

The diagram

plays a central role in the microscopic theory of Fermi liquids. Here, the straight line represents the

fermionic single-particle Green’s function which we take to be of the form

G(iωn,k) =
Zk

iωn − εk
, 0 < Zk ≤ 1. (1)

Naturally, the retarded and advanced expressions are then given by

GR(ω,k) =
Zk

ω + i0+ − εk
and GA(ω,k) =

Zk

ω − i0+ − εk
. (2)

For simplicity, you can assume the dispersion to be parabolic, εk = k2/(2m), although this is not

necessary to solve the following problems. Furthermore, the four-vector notation k = (iωn,k)
(fermionic) and q = (iΩn, q) (bosonic) combines Matsubara frequencies and momenta. The wiggly

lines in the diagram refer to the four-fermion-interaction amplitude Uq that in general depends on

the transferred momentum q.

a) In order to understand the physical meaning of Zk, often referred to as “quasiparticle residue” 1, 1pt(s)

calculate the spectral function and the occupation number from

A(ω,k) = − 1

π
ImGR(ω,k) and nk =

∫ ∞

−∞
dωA(ω,k)nF (ω). (3)

with nF (ω) representing the Fermi-Dirac distribution. How do you interpret these quantities?

1Note: This quantity can be obtained experimentally with angle-resolved photoemission spectroscopy (ARPES). See,

e.g., Chang, Johan, et al. ”Anisotropic breakdown of Fermi liquid quasiparticle excitations in overdoped La2−xSrxCuO4.”

Nature communications 4.1 (2013): 2559.
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b) Following the Feynman rules discussed in the lecture, argue why the analytical form (in Matsub- 1pt(s)

ara formalism) for the self-energy is given by

Σ (iωn,k) = T
∑
Ωm

∫
ddq

(2π)d
U2
qG (iωn + iΩm,k + q)Π (iΩm, q) , (4)

where d is the dimensionality of the system. Likewise, write the analytical form (also in the

Matsubara formalism) of the particle-hole bubble Π(iΩn, q) in terms of Eq. (1).2

For the following two tasks, remember that

2T =

{
Res [coth(βz/2), z = iΩn] , Ωn = 2πnT (Bosons)

Res [tanh(βz/2), z = iωn] , ωn = 2π(n+ 1)T (Fermions)
, (5)

for n ∈ Z, and consider the contours from the following figures:

Deformation used in the lecture
Poles of

c) Using the residue theorem (according to (5)), the contour in the complex plane shown above, 2pt(s)

and subsequent analytic continuation iωn → ω + i0+ to the real axis, show that the (retarded)

particle-hole bubble expression can be rewritten as

ΠR(Ω, q) = 2

∫
ddk

(2π)d

∫
dω

2π

[
tanh

( ω

2T

)
GR(ω + Ω,k + q) ImGR(ω,k)

+ tanh

(
ω + Ω

2T

)
GA(ω,k) ImGR(ω + Ω,k + q)

] (6)

Hint: The results we obtained in Problem 3.2a) will be helpful here :)

d) Similarly, considering the second contour from the image above and the definition Eq. (4), show 2pt(s)

that the (retarded) self-energy expression can be rewritten as

ΣR(ω,k) =

∫
ddq

(2π)d
U2
q

[
P
∫

dΩ

2π
coth

(
Ω

2T

)
GR(ω + Ω,k + q) ImΠR(Ω, q)

+

∫
dΩ

2π
tanh

(
Ω + ω

2T

)
ΠA(Ω, q) ImGR(ω + Ω,k + q)

], (7)

2There is a factor of 2 here coming from the summation over the spin.
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with P
∫
denoting the principle value integral, since there is a pole at z = 0.

Problem 6.2: Self-energy diagram in fermi liquid theory II [Written | 4 pt(s) ]

ID: ex_self_energy_fermi_liquid_written:qft25

Learning objective

This is the written continuation from the previous exercise.

a) Let us now focus on the imaginary part of ΣR(ω,k). First, the particle-hole bubble ΠR(Ω, q) 2pt(s)

contribution comes only from its imaginary part ImΠR(Ω, q) (why?).

Focusing on small T and ω (compared to the Fermi energy EF ), which allows neglecting ω and

Ω in the delta functions appearing in the expression for ImΠR(Ω, q), show that

ImΠR(Ω, q) ∼ Aq Ω (8)

and that the explicit form of the prefactor Aq is given in terms of the quasiparticle residues as

Aq = − 1

(2π)d−1

∮
dSkF

ZkF
ZkF+qδ (εkF+q)

∣∣∣∣
εk=0

, (9)

where dSk is a Fermi surface element.

Hint: To obtain Eq. (8) you can take the density of states to be independent of the direction normal to the

Fermi surface. Additionally, note that

coth
(x
2

)
= 2nB(x) + 1 and tanh

(x
2

)
= 1− 2nF (x), (10)

where the Fermi-Dirac (ζ = +1) and Bose-Einstein (ζ = −1) distributions are given by nζ(x) =
1

ex+ζ .

b) Using this result, obtain 2pt(s)

ImΣR(ω,k) ∼ Bk

(
ω2 + π2T 2

)
(11)

for ω, T � EF . This is the typical behavior of a Fermi liquid. Show that the prefactor Bk is

defined in terms of the quasiparticle residues as

Bk = −1

2

1

(2π)d−1

∫
ddq

(2π)d
U2
q

∮
dSk′

F
Zk′

F
Zk′

F+qZkF+qδ
(
εk′

F+q

)
δ (εkF+q) . (12)
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