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Problem 12.1: Feynman parameters [Written | 5 pt(s) ]

ID: ex_feynman_parameters:qft25

Learning objective

The purpose of this problem is to familiarize with the concept of Feynman parameters. It is for example

used for the calculation of integrals appearing in loop diagrams and introduces additional parameters in

order to bring the integrals into a form more suitable for calculation.

a) Begin with the simple case of two factors in the denominator: 1pt(s)

1

AB
=

1∫
0

dx
1

[xA+ (1− x)B]2
=

1∫
0

dx dy δ(x+ y − 1)
1

[xA+ yB]2
. (1)

By differentiating with respect to B, prove that

1

ABn
=

1∫
0

dx dy δ(x+ y − 1)
nyn−1

[xA+ yB]n+1
. (2)

b) Use Eq. (2) and show by induction that 2pt(s)

1

A1A2 · · ·An

=

1∫
0

dx1 dx2 · · · dxn δ
(∑

xi − 1
) (n− 1)!

[x1A1 + x2A2 + · · ·xnAn]n
. (3)

c) Finally, prove 2pt(s)

1

Am1
1 Am2

2 · · ·Amn
n

=

1∫
0

dx1 dx2 · · · dxn δ
(∑

xi − 1
) ∏

xmi−1
i

[
∑

xiAi]
∑

mi

Γ(m1 + · · ·+mn)

Γ(m1) · · ·Γ(mn)
, (4)

with Γ(x) the gamma function and Γ(n) = (n− 1)! for positive integer n.

Problem 12.2: The electron self-energy [Oral | 9 pt(s) ]

ID: ex_electron_self_energy:qft25

Learning objective

The mass-energy equivalence inherent to any relativistic theory implies for quantum field theories that

fluctuations of fields around particles with “bare” mass m0 shift the latter to a larger, observable mass m.

In QED, virtual photons that couple to the charged electron make up for its self-energy which, in turn,

contributes to its massm; we say that the mass is renormalized. As a result, we find thatm0 andm differ
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by an infinity.

In quantum electrodynamics (QED) the Feynman rules read as

=
i

/p−m0 + i0+
=

i(/p+m0)

p2 −m2
0 + i0+

, (5)

=
−iηµν

q2 + i0+
(6)

and

= −ieγµ (7)

for the electron and photon propagators as well as vertices, respectively.

The dressed electron propagator is given by the sum of diagrams

+ + . . . (8)

where the first diagram is just the free-field propagator, given in Eq. (5)

and the second diagram (the electron self-energy) yields the expression

p

k − p

k p

=
i(/p+m0)

p2 −m2
0

[−iΣ(p)]
i(/p+m0)

p2 −m2
0

. (9)

a) Show Eq. (5), i.e. 1pt(s)

i

/p−m0 + i0+
=

i(/p+m0)

p2 −m2
0 + i0+

(10)

by inverting the 4×4matrix /p. Use this as well as the Feynman rules to show that the self-energy

is given by

−iΣ(p) = (−ie)2
∫

d4k

(2π)4
γµ i(/k +m0)

k2 −m2
0 + i0+

γµ
−i

(p− k)2 − µ2 + i0+
, (11)

where m0 is the bare mass of the electron and µ > 0 is a small photon mass to regulate the

infrared divergence of the integral.
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b) Using Feynman parameters, show that the self-energy −iΣ(p) takes the form 3pt(s)

−iΣ(p) = −e2
1∫

0

dx

∫
d4`

(2π)4
−2x/p+ 4m0

[`2 −∆µ + i0+]2
, (12)

where ` = k − xp and ∆µ = −x(1− x)p2 + xµ2 + (1− x)m2
0.

Hint: The γ matrices fulfill γµγµ = 4 and γµγνγµ = −2γν .

c) To control the ultraviolet divergence of the integral (12), use the Pauli-Villars regularization 3pt(s)

1

(p− k)2 − µ2 + i0+
→ 1

(p− k)2 − µ2 + i0+
− 1

(p− k)2 − Λ2 + i0+
(13)

for Λ → ∞ and show that

Σ(p) =
α

2π

1∫
0

dx (2m0 − x/p) log

[
xΛ2

(1− x)m2
0 + xµ2 − x(1− x)p2

]
(14)

in this limit. The fine-structure constant α (in natural units) is given by α = e2/4π.
Hint: By a Wick rotation `0E = −i`0 integrals of the form

∫
d4`

(2π)4
1

(`2−∆+i0+)2
can be transformed into 4

dimensional spherical coordinates. Evaluating the angular part yields∫
d4`

(2π)4
1

(`2 −∆+ i0+)2
= i

∫ ∞

0

d`E
8π2

`3E
(`2E +∆)2

. (15)

d) Using the expression for the self-energy obtained in b), calculate the mass shift 2pt(s)

δm = m−m0 = Σ(/p = m) ≈ Σ(/p = m0) (16)

in first order of α.

Show that the bare mass m0 and the measurable mass m differ by a diverging quantity.
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