
QUANTUM FIELD THEORY Problem Set 11

Prof. Dr. Mathias Scheurer July 4th, 2025

Institute for Theoretical Physics III, University of Stuttgart SS 2025

Problem 11.1: Magnon-Magnon interactions [Oral | 7 (+1 bonus) pt(s) ]

ID: ex_holstein_magnon_self_energy_2:qft25

Learning objective

As a continuation of the previous sheet, we will investigate the corrections on the spectrum of spin

waves due to magnon-magnon interactions and check that to first order in perturbation theory, there is

a correction to the bare dispersion ωk proportional to T 5/2 confirming that, indeed for small T , these
interactions will not be dominant.

For finite temperatures, magnon-magnon interaction effects will become more pronounced and

produce corrections to the spin-wave dispersion ωk obtained previously. Within second-order

perturbation theory, the real part of the renormalized spectrum reads as

ω
(2)
k = ωk + Σ(1)(k) + . . . (1)

Our goal will be to explicitly calculate the self-energy correction Σ(1)(k).

a) First, show that the quartic interaction term can be rewritten as 2pt(s)

HHP
4 = −zJ

N

∑
k1,k2,k3,k4

δk1+k2,k3+k4v
HP
k1,k2,k3,k4

a†k1
a†k2

ak3
ak4

(2)

with

vHP
k1,k2,k3,k4

=
1

2
γk1−k3 − S

(
1−

√
1− 1

2S

)
(γk1 + γk4) + c.c. . (3)

Note that this potential is invariant under the exchange k1 ↔ k2 and k3 ↔ k4 such that it can

be rewritten as

vHP
k1,k2,k3,k4

=
1

4
(γk1−k3 + γk1−k4 + γk2−k3 + γk2−k4)− S

(
1−

√
1− 1

2S

)
× (γk1 + γk2 + γk3 + γk4) .

(4)

∗b) Show that (3) and (4) are equivalent, according to the previous explanation. +1pt(s)

c) The dressed Green’s function upto first order can be written as 3pt(s)

G
(1)
k (ω) = G

(0)
k (ω) + Σ(1)(k)

[
G

(0)
k (ω)

]2
(5)

and is given by the diagram below
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The multiplicity factor (4) accounts for the different number of equivalent diagrams. This can be

found after applying Wick’s theorem and keeping track only of connected diagrams in (2) after

changing the basis to field operators. The contractions imply that k1 = k4 = k and k3 = k2 = p.

Show that the self-energy contribution associated with this diagram (right-side) and to order

1/S is given by

Σ(1)(k) = −2zJ

N

∑
p

(1 + γk−p − γk − γp)nB(ωp) (6)

and nB(ωp) = 1/
(
eωp/T − 1

)
is the Bose-Einstein distribution.

d) Finally, from eq. (6), show that magnon interactions produce a T 5/2 correction to the bare spin 2pt(s)

wave dispersion given by (in 3D)

Σ(1)(k) ∝ k2
∫

d3p

(2π)3
p2

eAp2/T − 1
∝ k2

(
T

A

)5/2

. (7)

by taking the long wavelength limiti and integrating the remaining expression over a sphere of

infinite radius.

Hint: You may find the following integral useful∫ ∞

0
dx

x
3
2

ex − 1
=

3

4

√
πζ

(
5

2

)
. (8)

Problem 11.2: Free-particle solutions of the Dirac equation [Written | 5 (+2 bonus) pt(s) ]

ID: ex_free_particle_solutions_dirac_equation:qft25

Learning objective

In the lecture you will start with high energy physics soon. This exercise will be a refresher on relativistic

quantum mechanics and you will calculate different properties of solutions of the free Dirac equation.

The Dirac equation is given by

(iγµ∂µ −m)ψ = 0 (9)

where the γ matrices in the Weyl representation are γ0 =

(
0 1

1 0

)
and γi =

(
0 σi

−σi 0

)
. Here σi

are the standard Pauli matrices. As you might know from previous courses, the general solution
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of the Dirac equation can be written as a superposition of plane waves whose positive-frequency

solutions are given by

ψ(x) = u(p)e−ip·x , p2 = m2 , p0 > 0 . (10)

pµ = (p0,p) and xµ = (t,x) are 4-vectors and their inner product is defined as p · x = pµxµ =
pµη

µνxν = p0t− p · x. For the Minkowski metric η we use the (+−−−) convention.

a) Show that u(p) must fulfill 1pt(s)

(γµpµ −m)u(p) = 0. (11)

Write the γ matrices in terms of Pauli matrices to bring the equation in a clearer form.

We denote the two independent solutions for u(p)

us(p) =

(√
p · σξs√
p · σ̄ξs

)
, s = 1, 2 (12)

with the two-component spinors ξs ∈ C2 which are normalized according to (ξs)†ξr = δrs. Here,
σµ = (1,σ) and σ̄µ = (1,−σ) with the Pauli vector σ = (σ1, σ2, σ3)

T .

Note: The operators p · σ and p · σ̄ have a positive spectrum and thus their square roots can be uniquely

defined via
√
p · σ2 = p · σ and

√
p · σ̄2 = p · σ̄, respectively.

b) To show that us(p) are solutions of Eq. (11) first prove the the identity (p · σ)(p · σ̄) = p2 = m2. 1pt(s)

c) Use b) to show that us(p) solves Eq. (11) for any ξs. 1pt(s)

d) Show that ur†(p)us(p) is not Lorentz invariant. Show that instead u(p) can be normalized in a 2pt(s)

Lorentz invariant way according to

ūr(p)us(p) = 2mδrs (13)

with ū = u†γ0.

∗e) Similarly to above, the negative-frequency solutions +2pt(s)

ψ(x) = v(p)eipx , p2 = m2 , p0 > 0 (14)

can be obtained with two linearly independent solutions

vs(p) =

( √
p · σηs

−
√
p · σ̄ηs

)
, s = 1, 2 , (15)

where ηs is another basis of two-component spinors. These solutions are normalized according

to v̄r(p)vs(p) = −2mδrs.

Show that ūr(p)vs(p) = v̄r(p)us(p) = 0 and ur†(p)vs(p) 6= 0 as well as vr†(p)us(p) 6= 0.
However, show that reversing the sign of the 3-momentum in one factor of each spinor product

leads to ur†(p)vs(−p) = vr†(p)us(−p) = 0.
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