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Problem 10.1: Mapping the Ising model to φ4 theroy [Oral | 5 pt(s) ]

ID: ex_non_linear_sigma_model_expansion:qft25

Learning objective

In this exercise you will perform a gradient expansion and show that the effective action in the partition

function of the Ising model can be mapped to the well studied φ4 theory with an additional magnetic

term.

In the lecture you derived the effective action of the Ising model after the Hubbard-Stratonovich

transformation

Seff[φ] =
∑
ij

φiJ̄ijφj −
∑
i

φih̄i −
∑
i

ln cosh

[
2
∑
j

J̄ijφj

]
, (1)

which will be the starting point of this exercise. We assume that the coupling J̄ takes the form

J̄ij = f(|i− j|) for some function f that does not vary over space rapidly. This allows us to express

J̄ij in Fourier space according to

J̄ij =
1

N

∑
k

e−ik·(ri−rj)J(k) (2)

and neglect higher orders of J(k) = J(0) + 1
2
J ′′(0)k2 +O(k4) ≈ J(0) + 1

2
J ′′(0)k2. Why is there

no linear term?

a) As a first step, use φi =
1√
N

∑
k e

−ik·riφ(k) and Eq. (2) to rewrite Eq. (1) in Fourier space. Expand 1pt(s)

J(k) up to second order in k.

b) Expand the ln cosh term according to ln cosh(x) ≈ x2

2
− x4

12
and only keep the terms up to φ4 2pt(s)

and k2φ2.

c) Finally, show that the real space representation of the remaining terms is 2pt(s)

Seff[φ] =

∫
ddx

[ c
2
(∇φ)2 +

r

2
φ2 + gφ4 + hφ

]
(3)

in the continuum limit. What are the explicit forms of of the prefactors c, r, g, and h?

Hint: You might stumble across terms of the form
∫
ddxφ(x)

[
∇2φ(x)

]
. They can be related to∫

ddx [∇φ(x)]2 via partial integration.

Problem 10.2: Holstein-Primakoff Transformation [Written | 6 (+3 bonus) pt(s) ]

ID: ex_holstein_magnon_self_energy:qft25
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Learning objective

Spin degrees of freedom can be represented in terms of different fermionic or bosonic second-quantized

operators that still obey the SU(2) algebra. This approach can not only bring new insights between

quantum and classical spin models, but in more drastic cases even provide exact solutions, like in the

paradigmatic example of the Kitaev spin liquid with a Majorana representation.

In this exercise, you will see how a bosonic mapping of spins, called Holstein-Primakoff transformation,

can be used to naturally describe the spectrum of excitations of magnetically ordered phases, the so-called

magnons. This mapping also provides a natural step for using many-body perturbation theory, which we

shall do to investigate the effect of magnon-magnon interactions on the spectrum of spin waves in the

next sheet.

Consider the Heisenberg Hamiltonian given by

H = −
∑
〈i,j〉

Ji,jSi · Sj = −J
∑
i,δ

Si · Si+δ, (4)

where δ indicate nearest-neighboring vectors. Generally, the coupling constants Ji,j can describe

anisotropies, but we will assume for simplicity the uniform (Ji,j = J ) and ferromagnetic (J > 0)
case for this exercise.

The spins in (4) can be mapped to bosonic creation (a†i ) and destruction (ai) operators that satisfy
the commutation rules[

ai, a
†
j

]
= δi,j, [ai, aj] =

[
a†i , a

†
j

]
= 0, (5)

with the Holstein-Primakoff (HP) transformation, defined by

S+
i = Sx

i + iSy
i =

√
2S

(
1− a†iai

2S

) 1
2

ai,

S−
i = Sx

i − iSy
i =

√
2Sa†i

(
1− a†iai

2S

) 1
2

,

Sz
i = S − a†iai = s− n̂i,

(6)

such that ni ≤ 2S in the bosonic subspace. The right side of S±
i can be expanded such that

S+
i =

√
2S

1− a†iai
4S

−

(
a†iai

)2
32S2

· · ·

 ai =
√
2S

{
1−

(
1−

√
1− 1

2S

)
a†iai

+

[
1−

√
1− 1

2S
− 1

2

(
1−

√
1− 1

S

)](
a†i

)2
(ai)

2 · · ·

}
ai,

(7)
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and

S−
i =

√
2Sa†i

1− a†iai
4S

−

(
a†iai

)2
32S2

· · ·

 =
√
2Sa†i

{
1−

(
1−

√
1− 1

2S

)
a†iai

+

[
1−

√
1− 1

2S
− 1

2

(
1−

√
1− 1

S

)](
a†i

)2
(ai)

2 · · ·

}
.

(8)

a) Show that the operators defined in (6) satisfy the SU(2) algebra, i.e., the following commutation 2pt(s)

relations[
Sz
i , S

±
j

]
= ±S±

i δi,j ,
[
S+
i , S

−
j

]
= 2Sz

i δi,j. (9)

∗b) Why is it necessary to demand ni = a†iai ≤ 2S to ensure that we have only physical states in +1pt(s)

the bosonic subspace?

c) By using the HP transformation, the Heisenberg Hamiltonian (4) can now be expressed in a 2pt(s)

bosonic form as

HHP = EHP
0 +HHP

2 +HHP
4 +HHP

6 + . . . (10)

Show that up to and including quartic bosonic interaction terms we obtain

EHP
0 = −zJS2N, (11)

HHP
2 = JS

∑
i,δ

(
a†iai + a†i+δai+δ − a†i+δai − a†iai+δ

)
, (12)

and

HHP
4 =− J

∑
i,δ

[
1

2

(
a†ia

†
i+δaiai+δ + h.c.

)
− S

(
1−

√
1− 1

2S

)
×
(
a†i+δa

†
iaiai + a†i+δa

†
i+δai+δai + h.c.

)]
.

(13)

Notice that S
(
1−

√
1− 1

2S

)
≈ 1

4

(
1 + 1

8S
+ 1

32S2

)
by expanding the first few terms of the

series expansion in powers of 1
S
.

In eqs. (11-13), N represents the number of spins, z the coordination number, EHP
0 the

ground-state energy of the ferromagnetic state, the bilinear interaction term HHP
2 describes

non-interacting magnons, and HHP
4 the first term in expansion (10) that takes into account

magnon-magnon interactions.

d) So far, we have only considered localized spin deviations with the operators ai and a
†
i . We define 2pt(s)

the spin wave or magnon creation and destruction operators using Fourier transforms of the

localized operators

ak =
1√
N

∑
i

e−ik·riai, a†k =
1√
N

∑
i

eik·ria†i (14)
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which obey[
ak, a

†
k′

]
= δk,k′ , [ak, ak′ ] =

[
a†k, a

†
k′

]
= 0 (15)

as a consequence of (5). Using the magnon operators, (i) show that

HHP
2 = zJS

∑
k

[(1− γk) + c.c. ] a†kak. (16)

Note: For all Bravais lattices, γk = γ−k = γ∗
k.

(ii) Show that the energy spectrum vanishes quadratically ωk → Ak2 as k → 0, where A is the

spin wave stiffness.

∗e) Realistically, the low temperature behavior of compounds demands the inclusion of anisotropic +2pt(s)

terms to (4). For ferromagnets, one important example is the single-ion anisotropy given by

HD = −D
∑
i

(Sz
i )

2
(17)

due to the effect of a crystal field. If D > 0 (D < 0) the spins are forced to point along the

z ‘easy-axis’ ( xy ‘easy-plane’). How is the spin-wave dispersion ωk changed in the previous

question with the addition of this term?
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