
QUANTUM FIELD THEORY Problem Set 6

Prof. Dr. Mathias Scheurer May 15th, 2024

Institute for Theoretical Physics III, University of Stuttgart SS 2024

Problem 6.1: Self energy diagram in fermi liquid theroy [Written | 10 pt(s) ]

ID: ex_self_energy_fermi_liquid:qft24

Learning objective

In this exercise you will investigate one of the lowest-order diagrams that contributes to the imaginary

part of the fermionic self-energy. This is particularly important in Fermi Liquid theory, for example,

where the inverse of the imaginary part of the self-energy is related to the lifetime of quasiparticles.

In this exercise we will calculate the diagram

which plays a central role in the microscopic theory of Fermi liquids. Here the straight line represents

the fermionic single-particle Green’s function which we take to be of the form

G(iωn,k) =
Zk

iωn − εk
, 0 < Zk ≤ 1. (1)

For simplicity, you can assume the dispersion to be parabolic, εk = k2/(2m), although this is not

necessary to solve the following problems. Furthermore, k = (iωn,k) and q = (iΩn, q) are used
to comprise Matsubara frequencies and momenta with ωn and Ωn being fermionic and bosonic,

respectively. The wiggly lines in the diagram refer to the four-fermion-interaction amplitude Uq

that in general depends on the transferred momentum q.

a) In order to understand the physical meaning of Zk, often referred to as “quasiparticle residue”, 2pt(s)

calculate the spectral function and the occupation number of the single particle state k associated

with G(iωn,k) in Eq. (1).

b) Returning to our ultimate goal of evaluating the diagram Σ(iωn,k) shown above, write down 2pt(s)

its analytical form (in Matsubara formalism) following from the Feynman rules discussed in the

lecture. Identify the particle-hole bubble Π(iΩn, q) that has been a central building block in

many calculations of the lecture course.

c) Using the residue theorem with a properly chosen integration contour in the complex plane and 2pt(s)

subsequent analytic continuation iωn → ω + i0+ to the real axis, show that the retarded form
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ΣR(ω,k) of the diagram is given by

ΣR(ω,k) =

∫
ddq

(2π)d
U2
q

[
P
∫

dΩ

2π
coth

(
Ω

2T

)
GR(ω + Ω,k + q) ImΠR(Ω, q)

+

∫
dΩ

2π
tanh

(
Ω + ω

2T

)
ΠA(Ω, q) ImGR(ω + Ω,k + q)

] (2)

with d denoting the dimensionality of the system, P
∫
the principle value integral, GR/GA the

retarded/advanced Green’s function, and ΠR(Ω, q)/ΠA(Ω, q) the retarded/advanced particle-

hole bubble determined by

ΠR(Ω, q) = 2

∫
ddk

(2π)d

∫
dω

2π

[
tanh

( ω

2T

)
GR(ω + Ω,k + q) ImGR(ω,k)

+ tanh

(
ω + Ω

2T

)
GA(ω,k) ImGR(ω + Ω,k + q)

] (3)

and similarly for ΠA(Ω, q).

Hint: Remember that 2T is related to the residue of the hyperbolic functions for Res [coth(βz/2), iΩn] =

2T and Res [tanh(βz/2), iΩn] = 2T . You might also get some useful insights from the following figures.

d) Let us first focus on the imaginary part of ΣR(ω,k). Convince yourself that ΠR(Ω, q) enters 2pt(s)

ImΣR(ω,k) only in the form of its imaginary part ImΠR(Ω, q). Focusing on small T and ω
(compared to the Fermi energy EF ), which allows neglecting ω and Ω in the delta functions

appearing in the expression for ImΠR(Ω, q) following from Eq. (3), show that

ImΠR(Ω, q) ∼ Aq Ω (4)

and find the explicit form of the prefactor Aq .

Hint: To obtain Eq. (4) you can take the density of states to be independent of the direction normal to the

Fermi surface.
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e) Using this result, obtain 2pt(s)

ImΣR(ω,k) ∼ Bk

(
ω2 + π2T 2

)
(5)

for ω, T � EF . This is the typical behavior of a Fermi liquid. Determine an expression for the

prefactor Bk in terms of the quasiparticle residues.
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