Problem 6.1: Self energy diagram in fermi liquid theroy

ID: ex_self_energy_fermi_liquid:qft24

Learning objective

In this exercise you will investigate one of the lowest-order diagrams that contributes to the imaginary part of the fermionic self-energy. This is particularly important in Fermi Liquid theory, for example, where the inverse of the imaginary part of the self-energy is related to the lifetime of quasiparticles.

In this exercise we will calculate the diagram

which plays a central role in the microscopic theory of Fermi liquids. Here the straight line represents the fermionic single-particle Green's function which we take to be of the form

$$G(i\omega_n, \mathbf{k}) = \frac{Z_{\mathbf{k}}}{i\omega_n - \epsilon_{\mathbf{k}}}, \qquad 0 < Z_{\mathbf{k}} \le 1.$$
(1)

For simplicity, you can assume the dispersion to be parabolic, $\epsilon_{\mathbf{k}} = \mathbf{k}^2/(2m)$, although this is not necessary to solve the following problems. Furthermore, $k = (i\omega_n, \mathbf{k})$ and $q = (i\Omega_n, \mathbf{q})$ are used to comprise Matsubara frequencies and momenta with ω_n and Ω_n being fermionic and bosonic, respectively. The wiggly lines in the diagram refer to the four-fermion-interaction amplitude $U_{\mathbf{q}}$ that in general depends on the transferred momentum \mathbf{q} .

- a) In order to understand the physical meaning of Z_k , often referred to as "quasiparticle residue", $2^{pt(s)}$ calculate the spectral function and the occupation number of the single particle state k associated with $G(i\omega_n, k)$ in Eq. (1).
- b) Returning to our ultimate goal of evaluating the diagram $\Sigma(i\omega_n, \mathbf{k})$ shown above, write down $\mathbf{2}^{\mathsf{pt(s)}}$ its analytical form (in Matsubara formalism) following from the Feynman rules discussed in the lecture. Identify the particle-hole bubble $\Pi(i\Omega_n, \mathbf{q})$ that has been a central building block in many calculations of the lecture course.
- c) Using the residue theorem with a properly chosen integration contour in the complex plane and subsequent analytic continuation $i\omega_n \to \omega + i0^+$ to the real axis, show that the retarded form

[Written | 10 pt(s)]

May 15th, 2024

SS 2024

 $\Sigma^R(\omega, \boldsymbol{k})$ of the diagram is given by

$$\Sigma^{R}(\omega, \boldsymbol{k}) = \int \frac{\mathrm{d}^{d}\boldsymbol{q}}{(2\pi)^{d}} U_{\boldsymbol{q}}^{2} \left[\mathcal{P}\!\!\int \frac{\mathrm{d}\Omega}{2\pi} \coth\left(\frac{\Omega}{2T}\right) G^{R}(\omega + \Omega, \boldsymbol{k} + \boldsymbol{q}) \operatorname{Im}\Pi^{R}(\Omega, \boldsymbol{q}) \right. \\ \left. + \int \frac{\mathrm{d}\Omega}{2\pi} \tanh\left(\frac{\Omega + \omega}{2T}\right) \Pi^{A}(\Omega, \boldsymbol{q}) \operatorname{Im}G^{R}(\omega + \Omega, \boldsymbol{k} + \boldsymbol{q}) \right]$$
(2)

with d denoting the dimensionality of the system, $\mathcal{P}\int$ the principle value integral, G^R/G^A the retarded/advanced Green's function, and $\Pi^R(\Omega, \boldsymbol{q})/\Pi^A(\Omega, \boldsymbol{q})$ the retarded/advanced particle-hole bubble determined by

$$\Pi^{R}(\Omega, \boldsymbol{q}) = 2 \int \frac{\mathrm{d}^{d} \boldsymbol{k}}{(2\pi)^{d}} \int \frac{\mathrm{d}\omega}{2\pi} \left[\tanh\left(\frac{\omega}{2T}\right) G^{R}(\omega + \Omega, \boldsymbol{k} + \boldsymbol{q}) \operatorname{Im} G^{R}(\omega, \boldsymbol{k}) + \tanh\left(\frac{\omega + \Omega}{2T}\right) G^{A}(\omega, \boldsymbol{k}) \operatorname{Im} G^{R}(\omega + \Omega, \boldsymbol{k} + \boldsymbol{q}) \right]$$
(3)

and similarly for $\Pi^A(\Omega, \boldsymbol{q})$.

Hint: Remember that 2T is related to the residue of the hyperbolic functions for Res $[\coth(\beta z/2), i\Omega_n] = 2T$ and Res $[\tanh(\beta z/2), i\Omega_n] = 2T$. You might also get some useful insights from the following figures.

d) Let us first focus on the imaginary part of $\Sigma^R(\omega, \mathbf{k})$. Convince yourself that $\Pi^R(\Omega, \mathbf{q})$ enters $\mathbf{1}^{\mathrm{pt(s)}}$ Im $\Sigma^R(\omega, \mathbf{k})$ only in the form of its imaginary part Im $\Pi^R(\Omega, \mathbf{q})$. Focusing on small T and ω (compared to the Fermi energy E_F), which allows neglecting ω and Ω in the delta functions appearing in the expression for Im $\Pi^R(\Omega, \mathbf{q})$ following from Eq. (3), show that

$$\mathrm{Im}\Pi^{R}(\Omega, \boldsymbol{q}) \sim A_{\boldsymbol{q}}\,\Omega\tag{4}$$

and find the explicit form of the prefactor A_q .

Hint: To obtain Eq. (4) you can take the density of states to be independent of the direction normal to the Fermi surface.

Problem Set 6

e) Using this result, obtain

$$\mathrm{Im}\Sigma^{R}(\omega, \mathbf{k}) \sim B_{\mathbf{k}} \left(\omega^{2} + \pi^{2}T^{2}\right)$$
(5)

for $\omega, T \ll E_F$. This is the typical behavior of a Fermi liquid. Determine an expression for the prefactor B_k in terms of the quasiparticle residues.