Problem 6.1: Self energy diagram in fermi liquid theroy
[Written | $10 \mathrm{pt}(\mathrm{s})$]
ID: ex_self_energy_fermi_liquid:qft24

Learning objective

In this exercise you will investigate one of the lowest-order diagrams that contributes to the imaginary part of the fermionic self-energy. This is particularly important in Fermi Liquid theory, for example, where the inverse of the imaginary part of the self-energy is related to the lifetime of quasiparticles.

In this exercise we will calculate the diagram

which plays a central role in the microscopic theory of Fermi liquids. Here the straight line represents the fermionic single-particle Green's function which we take to be of the form

$$
\begin{equation*}
G\left(i \omega_{n}, \boldsymbol{k}\right)=\frac{Z_{k}}{i \omega_{n}-\epsilon_{\boldsymbol{k}}}, \quad 0<Z_{k} \leq 1 \tag{1}
\end{equation*}
$$

For simplicity, you can assume the dispersion to be parabolic, $\epsilon_{\boldsymbol{k}}=\boldsymbol{k}^{2} /(2 m)$, although this is not necessary to solve the following problems. Furthermore, $k=\left(i \omega_{n}, \boldsymbol{k}\right)$ and $q=\left(i \Omega_{n}, \boldsymbol{q}\right)$ are used to comprise Matsubara frequencies and momenta with ω_{n} and Ω_{n} being fermionic and bosonic, respectively. The wiggly lines in the diagram refer to the four-fermion-interaction amplitude $U_{\boldsymbol{q}}$ that in general depends on the transferred momentum \boldsymbol{q}.
a) In order to understand the physical meaning of Z_{k}, often referred to as "quasiparticle residue", calculate the spectral function and the occupation number of the single particle state \boldsymbol{k} associated with $G\left(i \omega_{n}, \boldsymbol{k}\right)$ in Eq. (1).
b) Returning to our ultimate goal of evaluating the diagram $\Sigma\left(i \omega_{n}, \boldsymbol{k}\right)$ shown above, write down its analytical form (in Matsubara formalism) following from the Feynman rules discussed in the lecture. Identify the particle-hole bubble $\Pi\left(i \Omega_{n}, \boldsymbol{q}\right)$ that has been a central building block in many calculations of the lecture course.
c) Using the residue theorem with a properly chosen integration contour in the complex plane and subsequent analytic continuation $i \omega_{n} \rightarrow \omega+i 0^{+}$to the real axis, show that the retarded form
$\Sigma^{R}(\omega, \boldsymbol{k})$ of the diagram is given by

$$
\begin{array}{r}
\Sigma^{R}(\omega, \boldsymbol{k})=\int \frac{\mathrm{d}^{d} \boldsymbol{q}}{(2 \pi)^{d}} U_{\boldsymbol{q}}^{2}\left[\mathcal{P} \int \frac{\mathrm{~d} \Omega}{2 \pi} \operatorname{coth}\left(\frac{\Omega}{2 T}\right) G^{R}(\omega+\Omega, \boldsymbol{k}+\boldsymbol{q}) \operatorname{Im} \Pi^{R}(\Omega, \boldsymbol{q})\right. \\
\left.+\int \frac{\mathrm{d} \Omega}{2 \pi} \tanh \left(\frac{\Omega+\omega}{2 T}\right) \Pi^{A}(\Omega, \boldsymbol{q}) \operatorname{Im} G^{R}(\omega+\Omega, \boldsymbol{k}+\boldsymbol{q})\right] \tag{2}
\end{array}
$$

with d denoting the dimensionality of the system, $\mathcal{P} \int$ the principle value integral, G^{R} / G^{A} the retarded/advanced Green's function, and $\Pi^{R}(\Omega, \boldsymbol{q}) / \Pi^{A}(\Omega, \boldsymbol{q})$ the retarded/advanced particlehole bubble determined by

$$
\begin{align*}
\Pi^{R}(\Omega, \boldsymbol{q})=2 \int \frac{\mathrm{~d}^{d} \boldsymbol{k}}{(2 \pi)^{d}} \int \frac{\mathrm{~d} \omega}{2 \pi} & {\left[\tanh \left(\frac{\omega}{2 T}\right) G^{R}(\omega+\Omega, \boldsymbol{k}+\boldsymbol{q}) \operatorname{Im} G^{R}(\omega, \boldsymbol{k})\right.} \\
+ & \left.\tanh \left(\frac{\omega+\Omega}{2 T}\right) G^{A}(\omega, \boldsymbol{k}) \operatorname{Im} G^{R}(\omega+\Omega, \boldsymbol{k}+\boldsymbol{q})\right] \tag{3}
\end{align*}
$$

and similarly for $\Pi^{A}(\Omega, \boldsymbol{q})$.
Hint: Remember that 2 T is related to the residue of the hyperbolic functions for $\operatorname{Res}\left[\operatorname{coth}(\beta z / 2), i \Omega_{n}\right]=$ $2 T$ and $\operatorname{Res}\left[\tanh (\beta z / 2), i \Omega_{n}\right]=2 T$. You might also get some useful insights from the following figures.

d) Let us first focus on the imaginary part of $\Sigma^{R}(\omega, \boldsymbol{k})$. Convince yourself that $\Pi^{R}(\Omega, \boldsymbol{q})$ enters $\operatorname{Im} \Sigma^{R}(\omega, \boldsymbol{k})$ only in the form of its imaginary part $\operatorname{Im} \Pi^{R}(\Omega, \boldsymbol{q})$. Focusing on small T and ω (compared to the Fermi energy E_{F}), which allows neglecting ω and Ω in the delta functions appearing in the expression for $\operatorname{Im} \Pi^{R}(\Omega, \boldsymbol{q})$ following from Eq. (3), show that

$$
\begin{equation*}
\operatorname{Im} \Pi^{R}(\Omega, \boldsymbol{q}) \sim A_{\boldsymbol{q}} \Omega \tag{4}
\end{equation*}
$$

and find the explicit form of the prefactor A_{q}.
Hint: To obtain Eq. (4) you can take the density of states to be independent of the direction normal to the Fermi surface.
e) Using this result, obtain

$$
\begin{equation*}
\operatorname{Im} \Sigma^{R}(\omega, \boldsymbol{k}) \sim B_{\boldsymbol{k}}\left(\omega^{2}+\pi^{2} T^{2}\right) \tag{5}
\end{equation*}
$$

for $\omega, T \ll E_{F}$. This is the typical behavior of a Fermi liquid. Determine an expression for the prefactor B_{k} in terms of the quasiparticle residues.

