Learning objective

The purpose of this problem is to become familiar with Feynman diagrams and their corresponding perturbative expressions. To this end, we use the interacting ϕ^{4}-theory and focus on its four-point correlator to apply the machinery of real- and momentum-space Feynman diagrams.

We consider the ϕ^{4}-theory

$$
\begin{equation*}
H=\frac{1}{2} \int \mathrm{~d}^{3} \boldsymbol{x}\left[\pi^{2}(\boldsymbol{x})+(\nabla \phi(\boldsymbol{x}))^{2}+m^{2} \phi^{2}(\boldsymbol{x})+2 \frac{\lambda}{4!} \phi^{4}(\boldsymbol{x})\right] \tag{1}
\end{equation*}
$$

with interacting fields $\phi(x)=e^{i H t} \phi(\boldsymbol{x}) e^{-i H t}$ and vacuum $|\Omega\rangle$.
a) Draw all relevant Feynman diagrams (i.e., without vacuum bubbles) for the perturbative expansion of the four-point function

$$
\begin{equation*}
\langle\Omega| \mathcal{T} \phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)|\Omega\rangle \tag{2}
\end{equation*}
$$

up to second order $\left(\lambda^{2}\right)$.
Draw two relevant diagrams of third order $\left(\lambda^{3}\right)$: one connected and one disconnected.
Hint: Ignore symmetry factors and permutations of external points. Use that four-point diagrams are either fully connected or decompose into products of disjoint two-point diagrams. Up to permutations, there are 3 connected diagrams and 6 additional disconnected diagrams up to second order.
*b) Draw all diagrams of third order. How many are connected and disconnected, respectively (again up to permutations)?
c) Using the real-space Feynman rules, write down the term described by the Feynman diagram

d) Label the Feynman diagram above with directed momenta and write down the corresponding expression as prescribed by the momentum-space Feynman rules.
e) Use the Fourier expansion of the Feynman propagator

$$
\begin{equation*}
D_{F}(x-y)=\int \frac{\mathrm{d}^{4} p}{(2 \pi)^{4}} \frac{i e^{-i p \cdot(x-y)}}{p^{2}-m^{2}+i \epsilon} \tag{3}
\end{equation*}
$$

to show that the expressions of c) and d) are equivalent.

Learning objective

Here you derive the Feynman rules for the complex Klein-Gordon field with an arbitrary interaction potential. Generically, this interaction violates causality and the resulting theory is no longer a relativistic quantum field theory. However, in condensed matter physics such theories can be used to describe the low-energy physics of interacting models that are otherwise hard to tackle analytically. This demonstrates that diagrammatic methods for perturbation theory are not restricted to relativistic high-energy physics.

Recall the (free) complex Klein-Gordon field (Problem 2.2) with Hamiltonian

$$
\begin{equation*}
H_{0}=\int \mathrm{d}^{3} \boldsymbol{x}\left(\pi^{\dagger} \pi+\nabla \phi^{\dagger} \nabla \phi+m^{2} \phi^{\dagger} \phi\right) \tag{4}
\end{equation*}
$$

and fields that satisfy the canonical commutation relations $[\phi(\boldsymbol{x}), \pi(\boldsymbol{y})]=i \delta^{(3)}(\boldsymbol{x}-\boldsymbol{y})$.
Let $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a symmetric $[V(\boldsymbol{r})=V(-\boldsymbol{r})]$ but otherwise arbitrary (well-behaved) potential. Here we consider the interacting theory

$$
\begin{equation*}
H=H_{0}+\frac{\lambda}{2} \int \mathrm{~d}^{3} \boldsymbol{x} \int \mathrm{~d}^{3} \boldsymbol{y} V(\boldsymbol{x}-\boldsymbol{y}) \phi^{\dagger}(\boldsymbol{x}) \phi^{\dagger}(\boldsymbol{y}) \phi(\boldsymbol{x}) \phi(\boldsymbol{y}) \tag{5}
\end{equation*}
$$

with small parameter λ.
At an arbitrary time t_{0}, we can expand the interacting field $\phi\left(t_{0}, \boldsymbol{x}\right)$ into modes,

$$
\begin{equation*}
\phi\left(t_{0}, \boldsymbol{x}\right)=\int \frac{\mathrm{d}^{3} \boldsymbol{p}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\boldsymbol{p}}}}\left(a_{\boldsymbol{p}} e^{i \boldsymbol{p} \boldsymbol{x}}+b_{\boldsymbol{p}}^{\dagger} e^{-i \boldsymbol{p} \boldsymbol{x}}\right) \tag{6}
\end{equation*}
$$

with the mode algebra

$$
\begin{equation*}
\left[a_{\boldsymbol{p}}, a_{\boldsymbol{q}}^{\dagger}\right]=(2 \pi)^{3} \delta^{(3)}(\boldsymbol{p}-\boldsymbol{q}) \quad \text { and } \quad\left[b_{\boldsymbol{p}}, b_{\boldsymbol{q}}^{\dagger}\right]=(2 \pi)^{3} \delta^{(3)}(\boldsymbol{p}-\boldsymbol{q}) \tag{7}
\end{equation*}
$$

(all other commutators vanish). In the interaction picture, we then have

$$
\begin{equation*}
\phi_{I}(x)=e^{i H_{0}\left(t-t_{0}\right)} \phi\left(t_{0}, \boldsymbol{x}\right) e^{-i H_{0}\left(t-t_{0}\right)}=\int \frac{\mathrm{d}^{3} \boldsymbol{p}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\boldsymbol{p}}}}\left(a_{\boldsymbol{p}} e^{-i p x}+b_{\boldsymbol{p}}^{\dagger} e^{i p x}\right) \tag{8}
\end{equation*}
$$

with $x^{0}=t-t_{0}$. Note that this is just the time evolution of the free theory H_{0} that you derived in Problem 2.2 b).
a) Let the contraction be defined as difference between time ordering and normal ordering:

$$
\begin{equation*}
\widehat{A B} \equiv \mathcal{T}\{A B\}-: A B \tag{9}
\end{equation*}
$$

where $A, B \in\left\{\phi_{I}, \phi_{I}^{\dagger}\right\}$.
Use the decomposition $\phi_{I}=\phi_{a}^{+}+\phi_{b}^{-}$and $\phi_{I}^{\dagger}=\phi_{a}^{-}+\phi_{b}^{+}$into positive- and negative-frequency parts (and your knowledge from the real Klein-Gordon field) to show that

$$
\begin{align*}
& \widehat{\phi}_{I}(x){ }_{I}(y) \tag{10a}\\
&=\overleftarrow{\phi}_{I}^{\dagger}(x) \phi_{I}^{\dagger}(y)=0 \tag{10b}\\
& \bar{\phi}_{I}^{\dagger}(x) \\
& I(y)
\end{align*}=\overleftarrow{\phi}_{I}(x) \phi_{I}^{\dagger}(y)=D_{F}(x-y)=\int \frac{\mathrm{d}^{4} p}{(2 \pi)^{4}} \frac{i e^{-i p \cdot(x-y)}}{p^{2}-m^{2}+i \epsilon} .
$$

b) Prove Wick's theorem for the free complex scalar field. That is, show that

$$
\begin{equation*}
\mathcal{T}\{A B C \ldots\}=: A B C \ldots:+:\left\{\text { all contractions between pairs of } \phi \text { and } \phi^{\dagger}\right\}: \tag{11}
\end{equation*}
$$

for $A, B, C, \cdots \in\left\{\phi_{I}, \phi_{I}^{\dagger}\right\}$.
Hint: Use induction (as in Peskin \& Schroeder) with the decomposition of ϕ and ϕ^{\dagger} from above.
c) As shown in the lecture (or in Problem 5.1), time-ordered correlation functions can be rewritten in terms of interaction picture fields via

$$
\begin{equation*}
\langle\Omega| \mathcal{T}\{A B C \ldots\}|\Omega\rangle=\lim _{T \rightarrow \infty(1-i \varepsilon)} \frac{\langle 0| \mathcal{T}\left\{A_{I} B_{I} C_{I} \ldots \exp \left(-i \int_{-T}^{T} d t H_{I}(t)\right)\right\}|0\rangle}{\langle 0| \mathcal{T} \exp \left(-i \int_{-T}^{T} d t H_{I}(t)\right)|0\rangle} \tag{12}
\end{equation*}
$$

for $A, B, C, \cdots \in\left\{\phi, \phi^{\dagger}\right\}$. Here $|\Omega\rangle$ is the interacting vacuum and the interaction picture Hamiltonian is given by

$$
\begin{equation*}
H_{I}(t)=\frac{\lambda}{2} \int \mathrm{~d}^{3} \boldsymbol{x} \int \mathrm{~d}^{3} \boldsymbol{y} V(\boldsymbol{x}-\boldsymbol{y}) \phi_{I}^{\dagger}(x) \phi_{I}^{\dagger}(y) \phi_{I}(x) \phi_{I}(y) . \tag{13}
\end{equation*}
$$

Use this prescription in combination with Wick's theorem to evaluate the two-point correlator

$$
\begin{equation*}
\langle\Omega| \mathcal{T} \phi(x) \phi^{\dagger}(y)|\Omega\rangle \tag{14}
\end{equation*}
$$

up to first order in λ.
Compare your result to the ϕ^{4}-theory.
d) Use the dictionary

$$
\begin{align*}
y \longrightarrow x & =\phi_{I}(x) \phi_{I}^{\dagger}(y)=D_{F}(x-y) \tag{15a}\\
u \ldots-w & =V(\boldsymbol{u}-\boldsymbol{w}) \delta\left(u^{0}-w^{0}\right) \tag{15b}
\end{align*}
$$

to recast the summands found in c) as Feynman diagrams.
Generalize your result to the Feynman rules of the interacting theory of a complex scalar field with interaction potential V.

