
QUANTUM FIELD THEORY Problem Set 3

Dr. Nicolai Lang April 27th, 2023

Institute for Theoretical Physics III, University of Stuttgart SS 2023

Problem 3.1: Fock states and coherent states [Oral | 4 (+1 bonus) pt(s) ]

ID: ex_fock_states_coherent_states:qft23

Learning objective

In this problem, we construct the Hilbert space of a (bosonic) quantum field theory on the basis of linear

superpositions of non-normalizable single-particle states and discuss how the concept of coherent states

translates to this setting.

The single-particle states |p〉 =
√

2Epa
†
p |0〉 are not well suited to build up the Hilbert space as

they are not normalizable due their diverging commutation relations, [ap, a
†
q] = (2π)3δ(3)(p− q).

However, it is possible to build a wave packet by linear superposition of momentum eigenstates,

a†(f) |0〉 =
∫

d3p

(2π)3
√

2Ep

f(p)a†p |0〉 . (1)

a) Calculate the commutator [a(f), a†(f)] and derive a condition for f(p) such that the states are 1pt(s)

normalizable.

b) Consider now the generalization to n particles. We define the unnormalized Fock state as 1pt(s)

|n〉 =
∫

d3p1

(2π)3
√

2Ep1

· · ·
∫

d3pn

(2π)3
√

2Epn

F (p1, . . . ,pn)a
†
p1
· · · a†pn

|0〉 , (2)

where F is symmetric under the exchange of two of its arguments. Calculate the norm of (2).

Show that (2) is an eigenstate of the number operator

N =

∫
d3p

(2π)3
a†pap (3)

and calculate its eigenvalue.

c) Calculate the expectation value of the (normal ordered) Hamiltonian 1pt(s)

H =

∫
d3p

(2π)3
Epa

†
pap (4)

of the real Klein-Gordon field with respect to the state (2).

d) Consider now a coherent superposition of n-particle states, that is a coherent state, 1pt(s)

|α〉 = exp

(∫
d3p

(2π)3
√
2Ep

α(p)a†p

)
|0〉 . (5)

Calculate its norm as well as the overlap of two (normalized) coherent states, 〈α|β〉. Interpret
the result.
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∗e) Show that (5) is an eigenstate of the annihilation operator ap and calculate its eigenvalue. Show +1pt(s)

that the coherent state remains a coherent state under time evolution with the Hamiltonian (4),

that is, show that e−iHt |α〉 = |β〉, where |β〉 has to be determined.

Problem 3.2: Free-particle solutions of the Dirac equation [Written | 4 pt(s) ]

ID: ex_free_particle_solutions_dirac_equation:qft23

Learning objective

In this problem, you will fill in the missing calculations of the discussion of the free-particle solutions of

the Dirac equation in the lecture. Additionally, you will calculate two important completeness relations

which will prove useful in the evaluation of Feynman diagrams.

In the lecture, you discussed that the general solution of the Dirac equation can be written as a

superposition of plane waves whose positive-frequency solutions are given by

ψ(x) = u(p)e−ipx , p2 = m2 , p0 > 0 . (6)

The two independent solutions for u(p) read

us(p) =

(√
p · σξs√
p · σ̄ξs

)
, s = 1, 2 (7)

with the normalization (ξs)†ξr = δrs of the two-component spinor ξs. Here, σµ = (1,σ) and
σ̄µ = (1,−σ) with the Pauli matrices σi.

a) Prove the identity (p · σ)(p · σ̄) = p2 = m2. Also show that (γµpµ +m)(γµpµ −m) = 0. 1pt(s)

b) Show that ur†(p)us(p) is not Lorentz invariant. Show that instead u(p) can be normalized in a 1pt(s)

Lorentz invariant way according to

ūr(p)us(p) = 2mδrs (8)

with ū = u†γ0.

c) Similarly to above, the negative-frequency solutions 1pt(s)

ψ(x) = v(p)eipx , p2 = m2 , p0 > 0 (9)

can be obtained with two linearly independent solutions

vs(p) =

( √
p · σηs

−
√
p · σ̄ηs

)
, s = 1, 2 , (10)

where ηs is another basis of two-component spinors. These solutions are normalized according

to v̄r(p)vs(p) = −2mδrs.

Show that ūr(p)vs(p) = v̄r(p)us(p) = 0 and ur†(p)vs(p) 6= 0 as well as vr†(p)us(p) 6= 0.
However, show that reversing the sign of the 3-momentum in one factor of each spinor product

leads to ur†(p)vs(−p) = vr†(p)us(−p) = 0.
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d) Finally, we consider the sum over the polarization states of a fermion which will be important 1pt(s)

when evaluating Feynman diagrams. Calculate the completeness relations∑
s

us(p)ūs(p) = /p+m, (11)∑
s

vs(p)v̄s(p) = /p−m (12)

with the Feynman slash notation /p ≡ γµpµ.

Problem 3.3: Lorentz group [Oral | 5 pt(s) ]

ID: ex_lorentz_group:qft23

Learning objective

In this exercise we want to familiarize ourselves with the Lorentz group and its continuous and discrete

generators.

The Lorentz group O(1, 3) is defined as group of 4× 4 matrices Λ that keep the Minkowski metric

g = diag(1,−1,−1,−1) invariant, i.e.

O(1, 3) = {Λ ∈ R4×4 |Λµ
αgµνΛ

ν
β = gαβ ⇐⇒ ΛTgΛ = g} . (13)

a) Show thatO(1, 3) is a group. Specifically show the following properties for any Λ1,Λ2 ∈ O(1, 3): 1pt(s)

i. Λ1Λ2 ∈ O(1, 3)

ii. Λ−1
1 exists and is in O(1, 3).

Since the Lorentz group is a Lie group, we can study its Lie algebra. Therefore, we look at an

infinitesimal Lorentz transformation

Λξ = exp(−iξiXi)
ξi�1
≈ 1− iξiXi , (14)

where the Xi ∈ R4×4 define the Lie algebra and are the generators of the Lorentz group and ξi are
the corresponding coefficients.

b) How does the condition of the Lorentz group ΛTgΛ = g translate to the generators Xi? Show 1pt(s)

that we can write the generators Xi as

(Xi)
µ
ν =


0 a b c
a 0 d e
b −d 0 f
c −e −f 0

 , (15)

where there are only 6 degrees of freedom left.

The basis set of the Lorentz Lie algebra is often chosen as

(J µν)ρσ = i (δµρδ
ν
σ − δµσδ

ν
ρ) , (16)
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with

Λω = exp(− i

2
ωµνJ µν) , (17)

where both, ωµν and J µν are antisymmetric.

Convince yourself that this basis corresponds to the matrices (15) by choosing one of the parameters

as one, and all the others zero. Therefore, the antisymmetric coefficient tensor ωµν still hosts 6

degrees of freedom.

c) Show that the commutator is: 1pt(s)

([J µν ,J αβ])ρσ = i
(
gναJ µβ − gνβJ µα − gµαJ νβ + gµβJ να

)ρ
σ . (18)

This defines the Lorentz algebra, and it has to be the same for all representations of the Lorentz

group.

d) Calculate the determinant of Λ for the definition in (13) and in (14). 1pt(s)

e) Convince yourself, that time reversal T and space inversion P are part of the Lorentz group 1pt(s)

(13), but they cannot be continuously connected to the identity

T =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , P =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (19)

Finally, also prove that T and P cannot be continuously connected.

Interpret your result by sketching the structure of the Lorentz group.
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