
Quantum Field Theory Exercise:
Lorentz covariance

Nicolai Lang & ChatGPT (GPT-4)

May 2, 2023

Text in black was given as input, text in blue was produced by ChatGPT.
I simply used the LATEX-code of the original exercise without any modifi-
cations as prompts. I copied the replies by ChatGPT without any modifi-
cations. It’s LATEX-code compiled flawlessly (I had a few compile issues,
but these were all my fault); it even used labels and references to refer to
its own equations.

Motivation This exercise serves as a brief revision of tensor calculus and
the covariant formulation of classical electromagnetism.

Context In the following, we will work in units where c = 1. Further, we
will make use of Einstein notation where summation over indices appearing
twice is assumed.

We first introduce the four-vector

xµ = (t, r), µ = 0, 1, 2, 3, (1)

which we will call a contravariant vector or tensor of first order. The vector
xµ is called covariant vector. In special relativity, the metric tensor is given
by

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (2)

1



and the relationship between co- and contravariant vectors is given by

xµ = gµνx
ν . (3)

A Lorentz vector is an object that under a Lorentz transformation Λµ
ν

transforms like

x̃µ = Λµ
νx

ν . (4)

In tensors of higher order, each index transforms as a Lorentz vector, e.g.

Ãαβγ
δε = Λα

µΛ
β
νΛ

γ
ξΛδ

ρΛε
σAµνξ

ρσ. (5)

A Lorentz scalar is a quantity that is invariant under Lorentz transforma-
tions.

a) Show that xµxµ is a Lorentz scalar, i.e. show that xµxµ = x̃σx̃σ.

To show that xµxµ is a Lorentz scalar, we need to prove that it remains
invariant under Lorentz transformations. In other words, we need to
show that xµxµ = x̃σx̃σ.

First, recall that under a Lorentz transformation, the contravariant
coordinates transform as

x̃µ = Λµ
νx

ν . (6)

Now, let’s find the covariant coordinates in the transformed frame.
Using the relationship between co- and contravariant vectors given by

xµ = gµνx
ν , (7)

we can write

x̃σ = gσρx̃
ρ. (8)

Substitute Eq. (6) into Eq. (8) to obtain

x̃σ = gσρΛ
ρ
νx

ν . (9)
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Now, let’s compute the quantity x̃σx̃σ. Using Eqs. (6) and (9), we get

x̃σx̃σ = (Λσ
µx

µ)(gσρΛ
ρ
νx

ν) (10)

= Λσ
µx

µΛρ
νgσρx

ν (11)

= xµ(Λσ
µgσρΛ

ρ
ν)x

ν . (12)

Using the property of Lorentz transformations, we have

Λσ
µgσρΛ

ρ
ν = gµν . (13)

Therefore,

x̃σx̃σ = xµgµνx
ν (14)

= xµxµ. (15)

This result shows that xµxµ is a Lorentz scalar, as it remains invariant
under Lorentz transformations.

b) Another important object is the four-gradient

∂

∂xµ
= ∂µ = (∂t,∇). (16)

Compute the d’Alembert operator ∂µ∂µ. Is this quantity a Lorentz
scalar?

The d’Alembert operator, also known as the d’Alembertian, is defined
as the contraction of the four-gradient with itself:

∂µ∂µ = gµν∂µ∂ν . (17)

Using the metric tensor gµν in special relativity:

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (18)
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we can calculate the d’Alembert operator as follows:

∂µ∂µ = gµν∂µ∂ν (19)

=
(
1 · ∂t∂t − (−1) · ∇2

x − (−1) · ∇2
y − (−1) · ∇2

z

)
(20)

= ∂2
t − (∇2

x +∇2
y +∇2

z) (21)

= ∂2
t −∇2, (22)

where ∇2 is the Laplacian operator.

Now let’s check if the d’Alembert operator is a Lorentz scalar. Recall
that a Lorentz scalar is a quantity that remains invariant under Lorentz
transformations. To verify this, we need to consider how the partial
derivatives transform under a Lorentz transformation.

Under a Lorentz transformation, the coordinates transform as

x̃µ = Λµ
νx

ν . (23)

Applying the chain rule to the partial derivatives, we find

∂

∂x̃µ
=

∂xν

∂x̃µ

∂

∂xν
= Λµ

ν∂ν . (24)

Therefore, the d’Alembert operator in the transformed frame can be
written as

∂̃µ∂̃µ = Λµ
ρΛµ

ν∂ρ∂ν . (25)

Using the property of Lorentz transformations,

Λµ
ρΛµ

ν = δνρ , (26)

we find that

∂̃µ∂̃µ = δνρ∂ρ∂ν = ∂ν∂ν = ∂µ∂µ. (27)

This result shows that the d’Alembert operator is indeed a Lorentz
scalar, as it remains invariant under Lorentz transformations.
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c) In a covariant formulation of electromagnetism, the electric and mag-
netic field E and B, respectively, are given by the antisymmetric field
tensor

Fµν =


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

 (28)

F µν = gµαgνβFαβ =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 (29)

The fields can also be described by the four-potential Aµ = (Φ,−A),
where Φ is a scalar potential and A is a vector potential.

Show that Fµν = ∂µAν − ∂νAµ reproduces the fields E and B.

We are given that the antisymmetric field tensor Fµν is defined as

Fµν = ∂µAν − ∂νAµ. (30)

To show that this definition reproduces the electric and magnetic fields
E and B, we will calculate the individual components of Fµν using the
four-potential Aµ = (Φ,−A).

Let’s begin with the time components:

1. F01 = ∂0A1 − ∂1A0 = −∂Φ
∂t

− ∂Ax

∂x
= Ex.

2. F02 = ∂0A2 − ∂2A0 = −∂Φ
∂t

− ∂Ay

∂y
= Ey.

3. F03 = ∂0A3 − ∂3A0 = −∂Φ
∂t

− ∂Az

∂z
= Ez.

Now let’s consider the spatial components:

1. F23 = ∂2A3 − ∂3A2 =
∂Az

∂y
− ∂Ay

∂z
= Bx.

2. F31 = ∂3A1 − ∂1A3 =
∂Ax

∂z
− ∂Az

∂x
= By.

3. F12 = ∂1A2 − ∂2A1 =
∂Ay

∂x
− ∂Ax

∂y
= Bz.
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As you can see, the components of Fµν correspond to the electric and
magnetic fields as expected:

Fµν =


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

 . (31)

This demonstrates that the definition Fµν = ∂µAν − ∂νAµ indeed re-
produces the fields E and B.

d) Show that Fµν is invariant under the gauge transformation Ãµ = Aµ −
∂µf , where f is an arbitrary function.

We want to show that Fµν is invariant under the gauge transformation
Ãµ = Aµ − ∂µf , where f is an arbitrary function. In other words, we
need to prove that F̃µν = Fµν , where F̃µν is the field tensor constructed
from the gauge-transformed four-potential Ãµ.

First, let’s compute the components of F̃µν :

F̃µν = ∂µÃν − ∂νÃµ. (32)

Substitute the gauge transformation Ãµ = Aµ − ∂µf :

F̃µν = ∂µ(Aν − ∂νf)− ∂ν(Aµ − ∂µf) (33)

= ∂µAν − ∂µ∂νf − ∂νAµ + ∂ν∂µf (34)

= (∂µAν − ∂νAµ) + (∂ν∂µf − ∂µ∂νf). (35)

Now we have

F̃µν = Fµν + (∂ν∂µf − ∂µ∂νf). (36)

To show that F̃µν = Fµν , we need to prove that the term (∂ν∂µf−∂µ∂νf)
vanishes. Note that partial derivatives commute, which means that
∂µ∂ν = ∂ν∂µ. Therefore,

∂ν∂µf − ∂µ∂νf = 0. (37)
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Consequently, we have

F̃µν = Fµν . (38)

This result shows that the field tensor Fµν is invariant under the gauge
transformation Ãµ = Aµ − ∂µf .

e) Show that in Lorenz gauge, ∂νA
ν = 0, and for no external sources, the

Maxwell equations ∂µF
µν = 0 reduce to ∂µ∂µA

ν = 0.

In the Lorenz gauge, we have the following condition:

∂νA
ν = 0. (39)

The Maxwell equations in covariant form, in the absence of external
sources, are given by:

∂µF
µν = 0. (40)

Recall that the field tensor F µν is defined as:

F µν = ∂µAν − ∂νAµ. (41)

Let’s substitute this expression into the Maxwell equations:

∂µ(∂
µAν − ∂νAµ) = 0. (42)

Now, let’s apply the product rule for differentiation:

(∂µ∂
µ)Aν − (∂µ∂

ν)Aµ = 0. (43)

We want to show that this equation reduces to ∂µ∂µA
ν = 0. To do

this, let’s examine the second term in the equation above. Using the
Lorenz gauge condition ∂νA

ν = 0, we have:

∂µ∂
νAµ = ∂ν(∂µA

µ) (44)

= ∂ν(0) (45)

= 0. (46)
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Thus, the Maxwell equations in the Lorenz gauge and for no external
sources reduce to:

∂µ∂µA
ν = 0. (47)

This is the desired result, showing that the Maxwell equations reduce
to the wave equation for the four-potential Aν in the Lorenz gauge and
in the absence of external sources.
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