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Lorentz covariance
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Text in black was given as input, text in blue was produced by ChatGPT.
I simply used the B'TEX-code of the original exercise without any modifi-
cations as prompts. I copied the replies by ChatGPT without any modifi-
cations. It’s BTEX-code compiled flawlessly (I had a few compile issues,
but these were all my fault); it even used labels and references to refer to
1ts own equations.

Motivation This exercise serves as a brief revision of tensor calculus and
the covariant formulation of classical electromagnetism.

Context In the following, we will work in units where ¢ = 1. Further, we
will make use of Einstein notation where summation over indices appearing
twice is assumed.

We first introduce the four-vector

= (t,r), pn=0,1,2,3, (1)

which we will call a contravariant vector or tensor of first order. The vector
x, is called covariant vector. In special relativity, the metric tensor is given
by

1 0 0 O

0 -1 0 O
MV p— p—

0O 0 0 -1



and the relationship between co- and contravariant vectors is given by

T, = g’ (3)

A Lorentz vector is an object that under a Lorentz transformation A*,
transforms like

= A" a. (4)
In tensors of higher order, each index transforms as a Lorentz vector, e.g.
AP = N NP NV ASPAT AR (5)

A Lorentz scalar is a quantity that is invariant under Lorentz transforma-
tions.

a) Show that x*z, is a Lorentz scalar, i.e. show that zz, = 27%,.

To show that x#z, is a Lorentz scalar, we need to prove that it remains
invariant under Lorentz transformations. In other words, we need to
show that a7, = 277,.

First, recall that under a Lorentz transformation, the contravariant
coordinates transform as

= A" ", (6)

Now, let’s find the covariant coordinates in the transformed frame.
Using the relationship between co- and contravariant vectors given by

Ty = G’ (7)
we can write

Ty = GopT”. (8)
Substitute Eq. @ into Eq. to obtain

Ty = gop\ 2" (9)



Now, let’s compute the quantity 2°z,. Using Egs. @ and @D, we get

P70y = (A%2")(gop Ay 2") (10)
= A7, 2" AP, go,n” (11)
= 2" (A7 ,9,pN)) 2" (12)

Using the property of Lorentz transformations, we have

AaugapApV = Juv- (13)

Therefore,
7%, = 2" gua” (14)
=tz (15)

This result shows that z#z, is a Lorentz scalar, as it remains invariant
under Lorentz transformations.

Another important object is the four-gradient

9y~ 0.V, (16)

ozt

Compute the d’Alembert operator 9#0,. Is this quantity a Lorentz
scalar?

The d’Alembert operator, also known as the d’Alembertian, is defined
as the contraction of the four-gradient with itself:

0"9, = g™ 0,0,. (17)

Using the metric tensor ¢g"” in special relativity:

1 0 0 0
, o =1 0 o
00 0 -1



we can calculate the d’Alembert operator as follows:

"0, = ¢ 0,0, (19)
= (1-00, — (-1)- V2= (=1)- V2 = (=1)-V?)  (20)
=P — (V2 4+ V24 V) (21)
=07 — V2, (22)

where V? is the Laplacian operator.

Now let’s check if the d’Alembert operator is a Lorentz scalar. Recall
that a Lorentz scalar is a quantity that remains invariant under Lorentz
transformations. To verify this, we need to consider how the partial
derivatives transform under a Lorentz transformation.

Under a Lorentz transformation, the coordinates transform as
= AF av. (23)
Applying the chain rule to the partial derivatives, we find

g  0x¥ 0
o Oxr Oz

= A0, (24)

Therefore, the d’Alembert operator in the transformed frame can be
written as

"0, = A*,A,"0,0,. (25)
Using the property of Lorentz transformations,
AP ALY =07, (26)
we find that

90, = 649,0, = 0”0, = 9"0,. (27)

This result shows that the d’Alembert operator is indeed a Lorentz
scalar, as it remains invariant under Lorentz transformations.



¢) In a covariant formulation of electromagnetism, the electric and mag-

netic field E and B, respectively, are given by the antisymmetric field

tensor

Nz

Fry — g/wégl/BFaB -

0O E E, E.

~E, 0 —B. B,

~E, B. 0 -B, (28)
-E. =B, B, 0

0 —-E, —E, —E.

E, ~-B. B,

E, B. 0 -B, (29)
E. =B, B, 0

The fields can also be described by the four-potential A, = (®,—A),
where @ is a scalar potential and A is a vector potential.

Show that F), = 0,A, — 0, A, reproduces the fields E and B.

We are given that the antisymmetric field tensor F),, is defined as

F,=0,A,—0,A,.

(30)

To show that this definition reproduces the electric and magnetic fields
E and B, we will calculate the individual components of ), using the

four-potential A, = (®, —A).

Let’s begin with the time components:

1. Fy; = 0gAy — 01 A = _%_f _ %
2. F02:80A2_82A0:—%_(f_88_‘?f
3' F03 - 80143 - 83140 = —%_(f — %

~ E,.
— B,
~E..

Now let’s consider the spatial components:

_0Ay

2' F31 - 83141 - 81A3 e 854;5 — 881?[2 — By-



As you can see, the components of F),, correspond to the electric and
magnetic fields as expected:

0O E, E, E.
_Ex

B 0 -B. B,
Fw=1_pg, B. 0 -B, (31)
—E. =B, B, 0

This demonstrates that the definition F), = 0,4, — 0, A, indeed re-
produces the fields E and B.

Show that F),, is invariant under the gauge transformation fl“ =A, -
0,f, where f is an arbitrary function.

We want to show that F),, is invariant under the gauge transformation
Ay = A, — 0.f, where f is an arbitrary function. In other words, we
need to prove that F),, = F),,, where F},, is tNhe field tensor constructed

from the gauge-transformed four-potential A,,.

First, let’s compute the components of FW:

F,.,=0,A,—-0,A, (32)

Substitute the gauge transformation flu =A,—0.f:

Fuy = 8,(A, — 0,f) — 8,(Ay — 0,f) (33)
= 0,A, — 0,0,f — 0,A, +0,0.f (34)
= (auAV — &,AM) + (ayauf — 8M8Vf). (35)

Now we have

F;w - FMV + (ayauf - auauf) (36)

To show that FW = F),,, we need to prove that the term (9,0, f—0,0, f)
vanishes. Note that partial derivatives commute, which means that
0,0, = 0,0,. Therefore,

0,0,f — 0,0, = 0. (37)



Consequently, we have

E,, =

Fun. (38)

This result shows that the field tensor F,, is invariant under the gauge
transformation A, = A, — d,f.

Show that in Lorenz gauge, 0,A” = 0, and for no external sources, the
Maxwell equations 9,F*" = 0 reduce to 90"9,A” = 0.

In the Lorenz gauge, we have the following condition:

8,A" = 0. (39)

The Maxwell equations in covariant form, in the absence of external
sources, are given by:

0, F" = 0. (40)
Recall that the field tensor F* is defined as:
Fr =9t AY — 9" A*. (41)
Let’s substitute this expression into the Maxwell equations:
0, (0" A” — 0" A") = 0. (42)
Now, let’s apply the product rule for differentiation:
(0,0MA” —(0,0")A" = 0. (43)
We want to show that this equation reduces to 9#9,A” = 0. To do

this, let’s examine the second term in the equation above. Using the
Lorenz gauge condition d,A” = 0, we have:

0,0 AP = 9 (0, A") (44)
= 0"(0) (45)
—0. (46)



Thus, the Maxwell equations in the Lorenz gauge and for no external
sources reduce to:

919, A = 0. (47)

This is the desired result, showing that the Maxwell equations reduce
to the wave equation for the four-potential A” in the Lorenz gauge and
in the absence of external sources.



