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Problem 13.1: Gupta-Bleuler quantization of the radiation field [Oral | 6 (+2 bonus) pt(s) ]

ID: ex_gupta_bleuler_quantization:qft23

Learning objective

In this problem you quantize the radiation field using the Gupta-Bleuler formalism. This method is an

alternative to the path integral quantization discussed in the lecture, and the canonical quantization

in Coulomb gauge that you (should) have seen in your advanced quantum mechanics course. Like the

path integral quantization (and unlike the Coulomb gauge quantization), the Gupta-Bleuler procedure is

manifestly Lorentz covariant and therefore suited for relativistic quantum field theories. As a final result,

you derive the propagator of the radiation field to verify the result obtained in the lecture.

Recall from Problem 1.3 that the Lagrangian density of the radiation field is given by

L = −1

4
FµνF

µν , (1)

and the resulting equations of motion are the Maxwell equations.

Using Aµ as our dynamical variable, convince yourself, that the conjugate momentum π0 = ∂L
∂(∂tA0)

vanishes. Therefore, we cannot quantize the Lagrangian (1) in a Lorentz invariant way (why?).

To overcome this problem, we will use the Gupta-Bleuler formalism and choose a new Lagrangian

density

Lξ = −1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2 . (2)

Note: In Lorenz gauge ∂µA
µ = 0 we recover the Lagrangian density (1) and therefore also the Maxwell

equations.

a) Is the new Lagrangian Lξ gauge invariant? Derive the equations of motion for the Lagrangian 1pt(s)

density (2) and the conjugate momentum πµ.

For simplicity, we will restrict ourselves to the case ξ = 1 (this is called the Feynman “gauge”).

We want to quantize the theory by imposing the canonical commutation relations

[Aµ(t,x), Aν(t,y)] = 0 = [πµ(t,x), πν(t,y)] ,

[Aµ(t,y), π
ν(t,x)] = iδνµδ

(3)(x− y) . (3)

(Why do we use the field πν and not πν in the commutators?)

∗b) Show that the commutation relations (3) can be rewritten as +1pt(s)[
Aµ(t,y), Ȧ

ν(t,x)
]
= −iδνµδ(3)(x− y) and

[
Ȧµ(t,x), Ȧν(t,y)

]
= 0 . (4)
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c) Show that the mode expansion 1pt(s)

Aµ(x) =

∫
d3p

(2π)3
1√
2 |p|

3∑
r=0

[
arpε

r
µ(p)e

−ipx + ar†p ε
r ∗
µ (p)e+ipx

]
, (5)

fulfills the commutation relations (4), provided that the modes satisfy the bosonic commutation

relations[
arp, a

s
q

]
= 0 and

[
arp, a

s†
q

]
= −grs (2π)3 δ(3)(p− q) . (6)

Here we include four possible photon polarization vectors εr(p) with r ∈ {0, 1, 2, 3} and

introduced the four-vector pµ = (|p| ,p).
Hint:

Without loss of generality, we can fix a polarization basis for each momentum p = |p| p̂. We choose the

polarization vectors εr(p) as follows:

• Scalar polarization: ε0µ(p) ≡ (1, 0, 0, 0),

• Longitudinal polarization: ε3µ(p) ≡ (0,−p̂),

• Transversal polarizations: ε1,2µ (p) ≡ (0,−p̂⊥1,2), with p̂⊥1,2 being orthogonal to p̂ and to each other.

With these definitions, show that εr(p) · εs ∗(p) = grs and prove the relation∑
r

εrµ(p)ε
r ∗
ν (p)grr = gµν . (7)

d) Calculate the norm of the single photon states 1pt(s)

|1r〉 =
∫

d3p

(2π)3
1√
2 |p|

f(p)ar†p |0〉 , (8)

for an arbitrary (normalizable) function f(p) and show that the Fock space of the photons has

an indefinite metric. Finally, evaluate the expression(∫
d3p

(2π)3
a0†p a

0
p

)
|10〉 (9)

and use the result to define a number operator N̂r that counts the number of photons with

polarization r ∈ {0, 1, 2, 3}.
Having an indefinite metric – and therefore negative probabilities – spoils the formalism of quantum

mechanics. Furthermore, so far we have four degrees of freedom for the photon, but expect only two

transversal polarizations for physical photons. As it turns out, those problems are linked and can be

fixed together, as we will see in the following.

Classically, to recover the original Lagrangian density Eq. (1) and the Maxwell equations from the

modified action Eq. (2), we would like to impose the Lorenz gauge condition ∂µA
µ = 0.

This, however, is not possible on the level of operators Aµ (Why?).

Instead, we could try to impose the Lorenz gauge condition on the level of expectation values for

physical states |ψ〉, i.e., 〈ψ|∂A|ψ〉 !
= 0; let H1 denote the space of such physical states. H1 should be

a linear (Hilbert) space, which can be satisfied by the stronger condition

∂µA(+)
µ |ψ〉 !

= 0 for all |ψ〉 ∈ H1 . (10)

Here A
(+)
µ is the annihilation (positive frequency) part of Aµ.

Problem Set Version: 1.0 | qft23 Page 2 of 3



QUANTUM FIELD THEORY Problem Set 13

e) First, prove that condition (10) spans a linear subspace H1 of the Fock space H. 1pt(s)

Next, show that for our choice of polarization vectors εrµ(p), Eq. (10) is equivalent to∑
r=0,3

pµεrµ(p)a
r
p |ψ〉 = 0 and therefore

(
a0p − a3p

)
|ψ〉 = 0 . (11)

Explain why we can henceforth focus on states |φ〉 with only scalar and longitudinal excitations

to examine this condition further.

We now consider states |φn〉 ∈ H1 with in total n (scalar or longitudinal) photons, i.e.,

N̂0+3 |φn〉 =
∫

d3p

(2π)3
[
a3†p a

3
p − a0†p a

0
p

]
|φn〉 = n |φn〉 , (12)

where N̂0+3 is the total number operator for scalar and longitudinal photons (Explain the signs!).

A general state |φ〉 can then be written as linear combination of states |φn〉 with different photon

numbers,

|φ〉 =
∑
n

cn |φn〉 , (13)

where cn are some coefficients.

f) Show that
〈
φn

∣∣∣N̂0+3

∣∣∣φn〉 = 0. What does this imply for the norm of |φn〉 and |φ〉? 1pt(s)

∗g) So far the coefficients cn are arbitrary. Show that the energy
〈ψ|H|ψ〉
〈ψ|ψ〉 does not depend on these +1pt(s)

coefficients, where the Hamiltonian is given by

H =

∫
d3p

(2π)3

3∑
r=0

(−grr)p0ar†p arp . (14)

Indeed, all physical observables are independent of the coefficients cn. The arbitrariness of |φ〉
reflects the gauge freedom of Aµ and does not have physical effects.

h) Finally, calculate the photon propagator 1pt(s)

〈0|T Aµ(x)Aν(y)|0〉 . (15)

Hint: Similar to the Feynman propagator of the Klein-Gordon field derived in the lecture, use the residue

theorem to transform the 3D momentum integral into a 4D momentum integral
∫ d3p

(2π)3
→

∫ d4p
(2π)4

.
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