10. Excursions
10.1 The Higgs Mechanism

$\mathcal{L} = \frac{-1}{4} F^2 + |D\phi|^2 - V(\phi)$

Potential: $V(\phi) = m^2 |\phi|^2 + \lambda |\phi|^4$

Gauge symmetry: $U(1)$

$\bar{\theta} = e^{i \alpha} \theta$

$A_\mu = A_\mu^0 - \frac{2}{\epsilon} \theta^0 \phi^0$

$M^2 > 0$

$M^2 < 0$

Unique vacuum: $\langle \phi \rangle = \langle \bar{\phi} \rangle = 0$

Degenerate vacua: $\langle \phi \rangle = 1, 0 \pm \sqrt{\frac{2 F}{\lambda}}$

Vacuum expectation value (VEV)

Goldstone modes

Goldstone Theorem

Spontaneous breaking of global, continuous symmetry

Massless scalar particle in spectrum (Massive Goldstone Boson)

Examples:
- Pions (π^0, $\pi^+\pi^-$, $\pi^0\pi^0$)
- Magnons (σ, γ)

Exception:
- Superconductivity ($\text{SU}(2)_{\text{G}}$) but not Goldstone mode

How can Goldstone Theorem fail?
5) \[\mathbf{X} < \phi > = \phi_c \] breaks global U(1) symmetry.

- \[\mathbf{d} (\phi) = (\mathbf{v} + i \mathbf{k} \mathbf{w}) e^{i \mathbf{p} / m} \]

2 real fields:
- \[\mathbf{v} \] Higgs field
- \[\mathbf{k} \] Goldstone boson

\[L = \frac{-1}{4} F^2 + \left[(\partial \phi + i A_\mu \phi) (\partial \phi - i A_\mu \phi) \right] - \frac{\lambda}{2} (\phi^2)^2 \]

\[A_\mu = A_\mu + \frac{1}{\mathbf{e}} \mathbf{A} \mathbf{e} \phi \]

6) Gauge theory:
- Unitary group: \[\phi = \phi^* \iff \phi = 0 \]
- \[\mathcal{G} = e^{- i A_\mu \phi} \mathcal{A}_\mu = A_\mu + \frac{1}{\mathbf{e}} \mathbf{A} \mathbf{e} \phi \]

Goldst
come mode + \[\phi \] disappeared.

(\[\phi \] is pure gauge D = not physical)
The Standard Model

10.2.1. Preliminaries

1. Chiral projectors:
 \[\rho = \frac{1}{2} \left(\mathbb{1} + \gamma_5 \right) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]
 Chiral fermion fields:
 \[\psi_R = \rho \psi \]
 \[\psi_L = \rho \psi \]

2. [\[P_R = \frac{1}{2} \left(\mathbb{1} + \gamma_5 \right) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]
 \[P_L = \frac{1}{2} \left(\mathbb{1} + \gamma_5 \right) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]
 \[\psi_R = P_R \psi \]
 \[\psi_L = P_L \psi \]
Under additional (gauge) symmetry, left- and right-handed fields \(\psi \) can transform under different representations.

10.2.2 Overview

- Scalar bosons \((= Spin-0) \)
- 2x Complex Higgs fields \(\phi, \phi^\dagger \) \((n=1) \)
- 3x Real Higgs field \(h \)

<table>
<thead>
<tr>
<th>Field content</th>
<th>11 Fermions (= Spin-1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation U</td>
<td>I</td>
</tr>
<tr>
<td>Leptons</td>
<td>e_L, e_R</td>
</tr>
<tr>
<td>Quarks</td>
<td>u_L, u_R</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field content</th>
<th>11 Vector Bosons (Spin-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force</td>
<td>Electroweak</td>
</tr>
<tr>
<td>Gauge group</td>
<td>SU(2)_L X U(1)_Y</td>
</tr>
<tr>
<td># Generations</td>
<td>3 + 1 = 4</td>
</tr>
<tr>
<td>Gauge field</td>
<td>W^± (1, 2, 1)</td>
</tr>
<tr>
<td>Gauge bosons</td>
<td>(B_A) before SSB</td>
</tr>
<tr>
<td>(\bar{W})</td>
<td>(\frac{1}{2}) W^\dagger W</td>
</tr>
<tr>
<td>(\bar{H_\tau})</td>
<td>(\bar{H_\tau}) SSB</td>
</tr>
</tbody>
</table>
Lagrangian:

\[\mathcal{L}_{\text{SM}} = \mathcal{L}_{\text{EWS}} + \mathcal{L}_{\text{QCD}} + \mathcal{L}_{\text{GUT}} \]

(Standard Model)

\[\mathcal{L}_{\text{EWS}} = -\frac{g^2}{2} \Omega \cdot E \cdot \mathcal{A} \cdot \text{det}(\mathcal{S}) \]

(Electroweak Standard Model)

\[\mathcal{L}_{\text{GUT}} \]

Glashow-Weinberg-Salam (GWS) Theory

\[\mathcal{L}_{\text{QCD}} \]

Unification of weak & electromagnetic forces

\[\mathcal{L}_{\text{QCD}} \]

Quantum Chromodynamics

\[\mathcal{L}_{\text{QCD}} = \text{Strong Force} \]