QUANTUM FIELD THEORY Problem Set 6

Dr. Nicolai Lang May 20t 2022
Institute for Theoretical Physics Ill, University of Stuttgart SS 2022
Problem 6.1: Feynman diagrams for ¢*-theory [Written | 4 (+1 bonus) pt(s)]

Learning objective

The purpose of this problem is to become familiar with Feynman diagrams and their corresponding
perturbative expressions. To this end, we use the interacting ¢*-theory and focus on its four-point
correlator to apply the machinery of real- and momentum-space Feynman diagrams.

We consider the ¢*-theory

i =5 [ o [w@)+ (Vola)? + @) + 2504 (e) )

with interacting fields ¢(z) = e'ft¢(x)e *H* and vacuum |Q).

a) Draw all relevant Feynman diagrams (i.e., without vacuum bubbles) for the perturbative expan-
sion of the four-point function

(Q T(z1)¢(22)(w5)d(x4) [2) (2)

up to second order (\?).
Draw two relevant diagrams of third order (\*): one connected and one disconnected.

Hint: Ignore symmetry factors and permutations of external points. Use that four-point diagrams
are either fully connected or decompose into products of disjoint two-point diagrams. Up to
permutations, there are 3 connected diagrams and 6 additional disconnected diagrams up to
second order.

*b) [+1 bonuspt(s)] Draw all diagrams of third order. How many are connected and disconnected,
respectively (again up to permutations)?

c¢) Using the real-space Feynman rules, write down the term described by the Feynman diagram

€ xs3

i) Ty
d) Label the Feynman diagram above with directed momenta and write down the corresponding
expression as prescribed by the momentum-space Feynman rules.
e) Use the Fourier expansion of the Feynman propagator

d*p i e~ (z—y)
DF('ZU - y) - / (277')4 p2 —m2 + e (3)

to show that the expressions of c) and d) are equivalent.
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Problem 6.2: Feynman rules for the interacting complex Klein-Gordon field [Oral | 4 pt(s)]

Learning objective

Here you derive the Feynman rules for the complex Klein-Gordon field with an arbitrary interaction
potential. Generically, this interaction violates causality and the resulting theory is no longer a relativistic
quantum field theory. However, in condensed matter physics such theories can be used to describe the
low-energy physics of interacting models that are otherwise hard to tackle analytically. This demonstrates
that diagrammatic methods for perturbation theory are not restricted to relativistic high-energy physics.

Recall the (free) complex Klein-Gordon field (Problem Set 2) with Hamiltonian
Hy = / &z (rir + Vo' Ve + m?eTe) (4)

and fields that satisfy the canonical commutation relations [¢(x), 7(y)] = i6®) (xz — y).

Let V : R® — R be a symmetric [V (r) = V(—r)] but otherwise arbitrary (well-behaved) potential.

Here we consider the interacting theory

H=t+ 5 [ €2 [ @yVie- )@ moiw ©)

with small parameter \.

At an arbitrary time ¢, we can expand the interacting field ¢(ty, ) into modes,

d3p 1 ' .
t — ipx bT —ipx 6
B(to, x) /—<27T)3 —\/E (ape™® + ble™P*) | (6)
with the mode algebra
[&p, aH = (27r)3 5@ (p—q) and [bw bfl] = (27r)3 6@ (p—q) (7)
(all other commutators vanish). In the interaction picture, we then have
) ) d3p 1 . )
iHo(t— —iHo(t— —ipx ipx
onla) = e, ) = [ 5B e (e 8 @

with 20 = ¢ — ¢,. Note that this is just the the time evolution of the free theory H that you derived
in Problem 2 b) of Problem Set 2.

a) Let the contraction be defined as difference between time ordering and normal ordering:

—
AB =T{AB} —:AB: 9)

where A, B € {¢I7¢;}'

Use the decomposition ¢; = ¢ + ¢, and (/b; = ¢, + ¢, into positive- and negative-frequency
parts (and your knowledge from the real Klein-Gordon field) to show that

[— [ —

o1(2)61(y) = ¢} (x)}(y) = 0 (10a)

I — d4 o~ (x—y)

O (2)or(y) = ér()d}(y) = Dp(z —y) = / (27:;4 pze_ m2 + ie (10b)
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b)

Prove Wick’s theorem for the free complex scalar field. That is, show that
T{ABC ...} =:ABC...: + :{all contractions between pairs of ¢ and ¢'}: (11)

for A,B,C,--- € {Cblaﬁb}}-

Hint: Use induction (as in Peskin & Schroeder) with the decomposition of ¢ and ¢! from above.

As shown in the lecture (or in Problem 1 of Problem Set 5), time-ordered correlation functions
can be rewritten in terms of interaction picture fields via

O T{ABIC . exp (—z It H,(t))} 10)
QT{ABC...}|Q)= lim .
T—oo(1—ie) (0| T exp (—@' It Hl(t)> 10)

(12)

for A, B,C,--- € {¢,¢'}. Here |Q) is the interacting vacuum and the interaction picture
Hamiltonian is given by

i) =5 [ & [ SyVie - ) 6j@ol o). (13

Use this prescription in combination with Wick’s theorem to evaluate the two-point correlator

(Q To(x)¢! (y) |2) (14)

up to first order in \.
Compare your result to the ¢*-theory.
Use the dictionary

1
y—>—z = ¢(z)¢}(y) = Dr(x —y) (152)
U=------ w = V(u—w)§u’ —u) (15b)

to recast the summands found in c) as Feynman diagrams.

Generalize your result to the Feynman rules of the interacting theory of a complex scalar field
with interaction potential V.
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