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Institute for Theoretical Physics III, University of Stuttgart SS 2022

Problem 6.1: Feynman diagrams for φ4-theory [Written | 4 (+1 bonus) pt(s) ]

ID: ex_feynman_diagrams_phi4_theory:qft22

Learning objective

The purpose of this problem is to become familiar with Feynman diagrams and their corresponding

perturbative expressions. To this end, we use the interacting φ4-theory and focus on its four-point

correlator to apply the machinery of real- and momentum-space Feynman diagrams.

We consider the φ4-theory

H =
1

2

∫
d3x

[
π2(x) + (∇φ(x))2 +m2φ2(x) + 2

λ

4!
φ4(x)

]
(1)

with interacting fields φ(x) = eiHtφ(x)e−iHt and vacuum |Ω〉.
a) Draw all relevant Feynman diagrams (i.e., without vacuum bubbles) for the perturbative expan- [ 1 pt(s) ]

sion of the four-point function

〈Ω| T φ(x1)φ(x2)φ(x3)φ(x4) |Ω〉 (2)

up to second order (λ2).

Draw two relevant diagrams of third order (λ3): one connected and one disconnected.

Hint: Ignore symmetry factors and permutations of external points. Use that four-point diagrams

are either fully connected or decompose into products of disjoint two-point diagrams. Up to

permutations, there are 3 connected diagrams and 6 additional disconnected diagrams up to

second order.

∗b) [+1 bonuspt(s)] Draw all diagrams of third order. How many are connected and disconnected,

respectively (again up to permutations)?

c) Using the real-space Feynman rules, write down the term described by the Feynman diagram [ 1 pt(s) ]

x1

x2

x3

x4

d) Label the Feynman diagram above with directed momenta and write down the corresponding [ 1 pt(s) ]

expression as prescribed by the momentum-space Feynman rules.

e) Use the Fourier expansion of the Feynman propagator [ 1 pt(s) ]

DF (x− y) =

∫
d4p

(2π)4
i e−ip·(x−y)

p2 −m2 + iε
(3)

to show that the expressions of c) and d) are equivalent.
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Problem 6.2: Feynman rules for the interacting complex Klein-Gordon field [Oral | 4 pt(s) ]

ID: ex_feynman_rules_interacting_complex_klein_gordon_field:qft22

Learning objective

Here you derive the Feynman rules for the complex Klein-Gordon field with an arbitrary interaction

potential. Generically, this interaction violates causality and the resulting theory is no longer a relativistic

quantum field theory. However, in condensed matter physics such theories can be used to describe the

low-energy physics of interacting models that are otherwise hard to tackle analytically. This demonstrates

that diagrammatic methods for perturbation theory are not restricted to relativistic high-energy physics.

Recall the (free) complex Klein-Gordon field (Problem Set 2) with Hamiltonian

H0 =

∫
d3x

(
π†π +∇φ†∇φ+m2φ†φ

)
(4)

and fields that satisfy the canonical commutation relations [φ(x), π(y)] = iδ(3)(x− y).

Let V : R3 → R be a symmetric [V (r) = V (−r)] but otherwise arbitrary (well-behaved) potential.

Here we consider the interacting theory

H = H0 +
λ

2

∫
d3x

∫
d3y V (x− y)φ†(x)φ†(y)φ(x)φ(y) (5)

with small parameter λ.

At an arbitrary time t0, we can expand the interacting field φ(t0,x) into modes,

φ(t0,x) =

∫
d3p

(2π)3
1√
2Ep

(
ape

ipx + b†pe
−ipx

)
, (6)

with the mode algebra[
ap, a

†
q

]
= (2π)3 δ(3)(p− q) and

[
bp, b

†
q

]
= (2π)3 δ(3)(p− q) (7)

(all other commutators vanish). In the interaction picture, we then have

φI(x) = eiH0(t−t0)φ(t0,x)e
−iH0(t−t0) =

∫
d3p

(2π)3
1√
2Ep

(
ape

−ipx + b†pe
ipx

)
(8)

with x0 = t− t0. Note that this is just the the time evolution of the free theory H0 that you derived

in Problem 2 b) of Problem Set 2.

a) Let the contraction be defined as difference between time ordering and normal ordering: [ 1 pt(s) ]

AB ≡ T {AB} − :AB : (9)

where A,B ∈ {φI , φ
†
I}.

Use the decomposition φI = φ+
a + φ−

b and φ†
I = φ−

a + φ+
b into positive- and negative-frequency

parts (and your knowledge from the real Klein-Gordon field) to show that

φI(x)φI(y) = φ†
I(x)φ

†
I(y) = 0 (10a)

φ†
I(x)φI(y) = φI(x)φ

†
I(y) = DF (x− y) =

∫
d4p

(2π)4
i e−ip·(x−y)

p2 −m2 + iε
. (10b)
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b) Prove Wick’s theorem for the free complex scalar field. That is, show that [ 1 pt(s) ]

T {ABC . . . } = :ABC . . .: + :{all contractions between pairs of φ and φ†}: (11)

for A,B,C, · · · ∈ {φI , φ
†
I}.

Hint: Use induction (as in Peskin & Schroeder) with the decomposition of φ and φ† from above.

c) As shown in the lecture (or in Problem 1 of Problem Set 5), time-ordered correlation functions [ 1 pt(s) ]

can be rewritten in terms of interaction picture fields via

〈Ω| T {ABC . . . } |Ω〉 = lim
T→∞(1−iε)

〈0| T {AIBICI . . . exp
(
−i

∫ T

−T
dtHI(t)

)
} |0〉

〈0| T exp
(
−i

∫ T

−T
dtHI(t)

)
|0〉

(12)

for A,B,C, · · · ∈ {φ, φ†}. Here |Ω〉 is the interacting vacuum and the interaction picture

Hamiltonian is given by

HI(t) =
λ

2

∫
d3x

∫
d3y V (x− y)φ†

I(x)φ
†
I(y)φI(x)φI(y) . (13)

Use this prescription in combination with Wick’s theorem to evaluate the two-point correlator

〈Ω| T φ(x)φ†(y) |Ω〉 (14)

up to first order in λ.

Compare your result to the φ4-theory.

d) Use the dictionary [ 1 pt(s) ]

y x = φI(x)φ
†
I(y) = DF (x− y) (15a)

u w = V (u−w) δ(u0 − w0) (15b)

to recast the summands found in c) as Feynman diagrams.

Generalize your result to the Feynman rules of the interacting theory of a complex scalar field

with interaction potential V .
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