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Problem 5.1: Harmonic central potential in 3D [Oral | 3 pt(s) ]

ID: ex_harmonic_oscillator_3D:km25

Learning objective

In the lecture we saw that the 1/r potential can be solved analytically. We now repeat the calculations

for the harmonic potential r2.

Consider a particle in three dimensions in a harmonic central potential V = 1
2
mω2r2. Apply the

methods from the lecture to the general solution of the central potential.

a) Use conservation of angular momentum to map the problem to a plane and introduce polar 1pt(s)

coordinates.

b) Derive the formal solution for r(t) and r(ϕ). 1pt(s)

c) Both integrals can be solved analytically. Calculate the integrals and determine r(t) and the 1pt(s)

trajectory r(ϕ) and ϕ(t).

Problem 5.2: Laplace-Runge-Lenz vector [Written | 2 (+3 bonus) pt(s) ]

ID: ex_laplace_runge_lenz_en:km25

Learning objective

In this task we consider the Laplace-Runge-Lenz vector, another conserved variable of the 1/r potential
in addition to energy and angular momentum.

We first consider a particle of mass m in the gravitational potential V = −k/r. The corresponding

equation of motion is

mr̈ = − k

r2
r̂ with k = GMm. (1)

Where r̂ is the unit vector pointing in the direction r, i.e. r̂ = r/r

a) Show that the Laplace-Runge-Lenz vector A, defined as 1pt(s)

A = mṙ ×L−mkr̂, (2)

is a constant of motion. What is the geometric interpretation of this conserved variable?

b) How is the magnitude of the Laplace-Runge-Lenz vector related to the eccentricity ε of Kepler’s 1pt(s)

orbit?

Hint: First, calculate Ar.
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From Noether’s theorem, we know that every symmetry leads a conserved variable. In the same

way, every conserved variable, including the Laplace-Runge-Lenz vector, corresponds to a symmetry

of the Lagrangian L = T − V . We will show this in the following. First, consider the infinitesimal

transformation

q′i = qi + δqi with δqi = m
3∑

j=1

εj (2q̇iqj − qiq̇j − qq̇δij) , (3)

with the parameters εj . The time is not transformed, so the velocities transform as follows

q̇′i = q̇i +
d

dt
δqi. (4)

∗c) Calculate to the first order of εj the change of Lagrangian under this transformation. The result +2pt(s)

has the form

L (q′i, q̇
′
i) = L (qi, q̇i) + g(qi, q̇i, q̈i) +O(ε2i ). (5)

Then consider the function

fj = m

(
mq̇2qj −mqq̇q̇j + k

qj
q

)
. (6)

Calculate d
dt
fj , and conclude that the Lagrangian only changes by one total derivative under the

infinitesimal transformation.

∗d) Now use Noether’s theorem to show that the Laplace-Runge-Lenz vector is the conserved +1pt(s)

quantity associated with this symmetry.

Problem 5.3: Perihelion rotation [Oral | 3 pt(s) ]

ID: ex_perihelion_precession:km25

Learning objective

In this task we consider the perihelion rotation. Classically, this is caused by a perturbation potential; in

the theory of relativity, it is obtained naturally by additional corrections to Newton’s limiting case.

In the gravitational potential of the sun V0 = −k/r the planets move in elliptical orbits. The

perihelion describes the closest point of the elliptical orbit to the sun and does not change in the

unperturbed gravitational potential. However, if an additional perturbation potential V = V0+δV (r)
is considered, this leads to a perihelion rotation.

In the unperturbed gravitational potential, the angle between one perihelion and the next perihelion

changes by exactly 2π. With the perturbation, the change in angle is calculated via

∆ϕ = −2
√

2µ
d

dl

∫ rmax

rmin

dr

√
E − V (r)− l2

2µr2
, (7)

where µ is the reduced mass and l is the absolute value of angular momentum.
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a) First check whether for δV = 0 equation (7) gives ∆ϕ = 2π. 1pt(s)

Hint: Take a derivative and use substitutions from the lecture notes

b) Calculate the perihelion rotation δϕ = ∆ϕ− 2π in the first order of δV . The result is 1pt(s)

δϕ = 2µ
d

dl

[
1

l

∫ π

0

dϕ r2(ϕ) δV (r(ϕ))

]
. (8)

Where r(ϕ) is the unperturbed solution (i.e. an ellipse).

c) Find the result for the perturbation potentials δV = γ/r3 and δV = β/r2. 1pt(s)
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