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Problem 5.1: Bound states of a spherical potential well [Written | 6 pt(s) ]

ID: ex_bound_states_spherical_potential_well:fqt2425

Learning objective

Here we will derive the bound states of a spherically symmetric potential well. To do so, we will exploit

the rotation symmetry of the problem and show that the radial solutions are given by spherical Bessel

functions (see lecture). The idea is to explicitly derive the transcendental equation that determines the

eigenenergies for bound states with angular momentum l = 0.

Consider the Hamiltonian of a particle in three dimensions

H =
p2

2m
+ V (r) (1)

with the spherically symmetric and piecewise constant potential

V (r) = V (r) =

{
0 r > R

V0 r ≤ R
(2)

with r = |r|, R > 0 the radius of the potential well and V0 < 0 the potential depth.

Your goal is to find the bound states and eigenenergies of this system and the conditions that are

necessary for their existence.

a) Make the separation ansatz Ψ(r) = Rl(r) · Ylm(θ, ϕ) with spherical harmonics Ylm and show 2pt(s)

that the eigenvalue problem reduces to[
ρ2∂2

ρ + 2ρ∂ρ + ρ2 − l(l + 1)
]
R̃l(ρ) = 0 (3)

with ρ ≡ Krr and R̃l(ρ) ≡ Rl(r) whereKr ≡
√

2m(E−V (r))

h̄2 .

b) Write down the general solution of the radial problem in the two regions r > R and r ≤ R for 2pt(s)

a given angular momentum l and formulate the continuity and boundary conditions that the

eigenstates must satisfy.

Hint: Use that the solutions of the differential equation[
x2∂2

x + 2x∂x + x2 − l(l + 1)
]
y(x) = 0 (4)

are given by the spherical Bessel functions

jl(x) = (−x)l
(
1

x
∂x

)l
sin(x)

x
and yl(x) = −(−x)l

(
1

x
∂x

)l
cos(x)

x
(5)

for l ∈ N0. (The functions yl are sometimes denoted nl and referred to as spherical Neumann functions.)

Write the eigenstates in terms of these functions.
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c) Consider the simplest case for l = 0. Find explicit expressions for the bound states and derive a 2pt(s)

transcendental equation to determine their eigenenergies. At which potential depth V0 appears

the first bound state?

Hint: Use your knowledge of the one-dimensional potential well to analyze the transcendental equation.

Problem 5.2: Angular momentum commutation relations [Oral | 7 pt(s) ]

ID: ex_j_angularmo_relations:fqt2425

Learning objective

In this exercise, you will prove the commutation relations that were stated in the lecture.

A generalized angular momentum J = (Jx, Jy, Jz) operator has the following property

[Jk, Jl] = ih̄εklmJm k, l,m = x, y, z. (6)

If J2 = J2
x + J2

y + J2
z and J± = Jx + iJy = J†

∓, show the following:

a) [Jz, J±] = ±h̄J± 2pt(s)

b) [J+, J−] = 2h̄Jz 1pt(s)

c) J±J∓ = J2 − Jz(Jz ∓ h̄) 2pt(s)

d) [J2, J±] = 0 2pt(s)

Problem 5.3: Clebsch-Gordan coefficients and spin-orbit coupling [Oral | 4 (+2 bonus) pt(s) ]

ID: ex_clebsch_gordan_coefficients_spin_orbit_coupling:fqt2425

Learning objective

In this problem you will apply the angular momentum addition theorem. As an important use case, we

consider the spin-orbit coupling in the hydrogen atom, which is the leading relativistic correction.

The spin-orbit coupling between the electron’s spin S and the orbital angular momentum L for a

hydrogen atom is given by the Hamiltonian

HLS = f(r)L · S = f(r)
∑

α=x,y,z

Lα ⊗ Sα , (7)

where f(r) = e2/2m2
ec

2r3. The spin-orbit coupling can be seen as a perturbation to the non-

relativistic Hamiltonian H0 = P 2/2m− e2/r of the hydrogen atom.

a) Define the total angular momentum operator as 2pt(s)

J = L+ S = L⊗ 1+ 1⊗ S (8)

and show that J2 and Jz commute both with H0 and HLS.
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b) Consider the subspace with orbital angular momentum ` and spin s. We can write the eigenstates 2pt(s)

|j,m〉 of J2 and Jz as linear combinations of Lz- and Sz-eigenstates |m`,ms〉 = |`,m`〉⊗|s,ms〉,

|j,m〉 =
∑
m`,ms

c(m`,ms; j,m) |m`,ms〉 . (9)

The coefficients c are called Clebsch-Gordan coefficients. Due to their ubiquity in quantum physics

there are comprehensive tables available, e.g.,

http://pdg.lbl.gov/2011/reviews/rpp2011-rev-clebsch-gordan-coefs.pdf.

Use this table to write down the change of basis (9) in the subspace with ` = 1 and s = 1/2
explicitely.

∗c) Derive the Clebsch-Gordan coefficients in b) by hand. +2pt(s)

Hint: Start with the stretched state |j = 3/2,mj = 3/2〉 and use the ladder operator J− = Jx − iJy
which acts as

J− |j,m〉 = h̄
√
j(j + 1)−m(m− 1) |j,m− 1〉 . (10)
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