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Prof. Dr. Hans-Peter Biichler July 10th, 2024
Institute for Theoretical Physics Ill, University of Stuttgart SS 2024
Problem 13.1: Lorentz Group [Oral | 3 pt(s)]

Learning objective

This exercise serves to become familiar with groups and their properties. Groups play a fundamental
role in all fields of physics and can tremendously simplify otherwise very challenging problems. In
this exercise we will explicitly show that Lorentz transformations form a group and further analyze the
properties of this group. Since the group elements are matrices here, this is a good example to understand
the abstract properties of groups in an easy way.

First, let us revise the definition of a group.

Definition: A group is a set G together with an operation e (called the group law of G) that combines
any two elements a and b to form another element, denoted by a e b. To qualify as a group, the set
and the operation, (G, ®), must satisfy four requirements known as the group axioms:

1) Closure: For all a, b € G, the result of the operation a e b is also an element of G.
2) Associativity: For all a, b, ¢ € G the following relation is satisfied (¢ e b) ec=a e (bec).

3) Identity element: There exists an element e € G, such that for every element a € G, the
equality e @ @ = a ® e = a holds. Such an element is unique, and thus called the identity element.

4) Inverse element: For each a € G, there exists an element b € G such thataeb=bea =¢,
where e is the identity element.

For Lorentz transformations, we define G as the set of matrices characterized by the invariance of
the metric tensor g of Minkowski spacetime, i.e.

G:={AeRY | AlgA=g}, (1)

and the group operation e as the multiplication of matrices.

a) Show that the Lorentz group is a group.

b) Depending on det(A) and sign(AY) the Lorentz group can be divided into four components.

Show that proper orthochronous Lorentz transformations, i.e. det(A) = 1 and sign(A%) = 1,
form a group.

c) Next, proof that each of three other components does not form a group. Give an example of the
combination of two out of four components which again gives a proper group.
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Problem 13.2: Relativistic formulation of Maxwell’s equations [Oral | 2 pt(s)]

Learning objective

In this exercise, we derive the Maxwell equations from a covariant formulation of classical electrody-
namics. You will also show that by adding a quadratic term to the Lagrangian gives the electromagnetic
four-potential A* a mass, but breaks the gauge invariance of the Lagrangian.

Consider the Lagrangian

1

L=—-—TF,
167 *°

1
FP — EJ“AM , (2)

where F,3 = 0,Ag — 03 A, is the field strength tensor, and J* = (cp, j) is the four-current.

a) Derive the Maxwell equations from the Lagrangian in Eq. (2) using the Euler-Lagrange equations.
Write the two inhomogeneous Maxwell equations in their standard form by using F; = —F% =
E;and Ij; = F = —&ijk By, © = x,y, 2. What happens with the two homogeneous equations?

b) In the following, we set J¢ = 0 but add an additional term to the Lagrangian

L—_1 FoP 4 s AP A 3)
16 P At A

Show that the Lagrangian is not gauge invariant anymore. Using the Lorentz gauge 0, A“ = 0
calculate the equation of motion for A® and show that A* = ¢®e*(P*=%) i5 a solution. Compare

the dispersion relation to the relativistic energy-momentum relation. (seth = ¢ = 1)

Note: In this exercise you see that a gauge invariant theory requires the gauge bosons (here: photons)
to be massless. While this is not a problem for the photons as they are massless, other gauge bosons like
the W or Z bosons, which mediate the weak interaction in the standard model, have a mass. To restore
the gauge invariance in these theories requires a trick: the famous Higgs mechanism.

Problem 13.3: Tractor beam [Oral | 4 pt(s)]

Learning objective

In this exercise, you will learn the transformation of electric and magnetic fields between different inertial
frames of reference using Lorentz transformations. Later, you will calculate the equation of motion with

respect to different inertial frames.

A beam of protons flies along the z-axis, wherein the protons have a speed v,, and a density n (in
protons per unit length).

a) Calculate the electric E(r) and magnetic fields B(r) generated by the beam as a function of the
distance to the beam 7.
Tip: The charge distribution can be approximated for  >> 1/n as continuous, which leads to the
charge density A = en and the current is given by I = env,,.
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b) Consider a point charge P moving parallel to the proton beam at the distance R with a velocity v. 17
Write down the equation of motion for this moving charge P considering charge to be negative

c) Now we look at the same situation from the perspective of the moving charge particle P. We set 17'®
here v = v,,. Transform the electric and magnetic fields into the coordinate system K’ of the
moving charge particle P.

d) Derive the equation of motion in the rest frame for the moving charge P. 17
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