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Problem 5.1: Potential of an infinitely long cylinder [Oral | 2 pt(s) ]

ID: ex_potential_infinite_cylinder:edyn23

Learning objective

Here, we solve Laplace’s equation in cylindrical coordinates with Dirichlet boundary conditions.

We consider an infinitely long, hollow cylinder of radius R. Using Laplace’s equation in cylindrical

coordinates, we determine the electric potential inside and outside of the cylinder, given the value

of the potential on the boundary of the cylinder.

a) Assume the potential on the boundary is given by 1pt(s)

φ(z, % = R,ϕ) = φ0 + φ1 cosϕ , (1)

where z is the axial coordinate, ϕ is the polar angle, and % the radial distance in cylindrical

coordinates. Think about the geometry of the problem and calculate the potential inside and

outside of the cylinder.

b) The potential on the boundary of the cylinder is 1pt(s)

φ(z, % = R,ϕ) = cos(kz) (φ0 + φ1 cosϕ) , (2)

with k 6= 0. Calculate the potential and determine its value in the limit % → ∞ (for taking this

limit, it is helpful to look up the asymptotic behavior of the Bessel function e.g. on Wikipedia).

Problem 5.2: Electric field of a dipole [Written | 6 pt(s) ]

ID: ex_electric_field_dipole:edyn23

Learning objective

In the first part of the problem, we calculate the electric field for a dipole. The resulting expression

contains a δ-function term, whose physical importance is discussed in the second part of the problem.

a) Recall the important result ∇2 1
|r| = −4πδ3(r) from Problem 2.1 and generalize it to 1pt(s)

∂α∂β
1

|r|
= − δαβ

|r|3
+ 3

xαxβ

|r|5
− 4π

3
δαβ δ

3(r). (3)

Hint: Use a symmetry argument and the result from exercise Problem 2.1 to derive the last term in

equation (3).
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b) In the lecture, it was demonstrated that the electric potential for a dipole p is given by φ(r) = 1pt(s)

p·r
4πε0|r|3 = −(p ·∇) 1

4πε0|r| . Using relation (3), show that the electric field of the dipole can be

written as (r̂ = r/|r|):

E(r) =
1

4πε0

[
3(r̂ · p) r̂ − p

|r|3
− 4π

3
p δ3(r)

]
. (4)

The δ-function term in equation (4) is a correction for r = 0. In the following, we are going to

re-derive it in a different way to understand its physical origin.

We would like to prove the following Theorem:The average electric field over the volume V enclosed

by a sphere of radius R, due to an arbitrary charge distribution within the sphere, is given by

E = − 1

4πε0

p

R3
, (5)

where p is the total dipole moment with respect to the center of the sphere.

c) To do this, first calculate the average electric field within the sphere (with enclosed volume V ), 1pt(s)

due to a single charge q at position rq:

Eq =
1

V

∫
V

d3rEq(r) =
1

4πε0

q

V

∫
V

d3r
r − rq
|r − rq|3

. (6)

Realize that this expression can also be considered as the electric field at the position rq, that
is generated by a (fictional) ball with a uniform charge density ρ = −q/V . Use this analogy to

calculate Eq via Gauss’s law.

d) Use the superposition principle to generalize the result for the point charge q to arbitrary charge 1pt(s)

distributions and prove equation (5).

e) Explicitly calculate the average electric field that is generated by a point-like dipole, by integrating 1pt(s)

the electric field from equation (4) over a ball. In your integration, start by excluding a small

region around the origin.

f) Finally, show that the δ-function term in equation (5) is essential to satisfy the average-value 1pt(s)

theorem.

Note: Another approach is to calculate the electric field of a homogeneously polarized ball of radius a.

Outside of the ball, the field is exactly given by equation (4). Inside the ball, the field has a constant value

Ein = −1/4πε0 · p/a3, where p is the dipole moment of the ball. As the size of the ball goes to zero, the field

strength goes to infinity in such a way that the integral over the ball remains constant, giving the prefactor of

the δ-function: −p/3ε0.
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Problem 5.3: Spherical multipole moment [Oral | 2 pt(s) ]

ID: ex_spherical_multipole_moment:edyn23

Learning objective

The goal of this problem is to calculate the spherical multipole moments qlm for different charge distribu-

tions and to study when a quadrupole moment occurs.

We perform calculations for two charge distributions (A) and (B). Both consist of four charges in

the xy-plane, placed distance a from the origin and equidistant to each other. The distributions are

given in the sketch

a) Write down the charge distribution in spherical coordinates. The relation between the charge 1pt(s)

distribution in Cartesian coordinates ρ(x, y, z) and spherical coordinates ρsph(r, θ, φ) is given by

(why?):

ρ(x, y, z) =
ρsph(r, θ, φ)

r2 sin θ
(7)

b) Compute the spherical monopole, dipole and quadrupole moments for both arrangements. 1pt(s)
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