THEO IlI: ELEKTRODYNAMIK Problem Set 11

Prof. Dr. Hans-Peter Biichler June 26', 2023
Institute for Theoretical Physics Ill, University of Stuttgart SS 2023
Problem 11.1: Lifetime of “classical” atoms [Oral | 3 pt(s)]

Learning objective

In this problem we will calculate the lifetime of a classical atom in presence of an oscillating dipole. We
will learn about the stability of the atom caused by the dipole radiation in a classical and a quantum
picture.

Pretend you forgot everything you have learned in your quantum mechanics course last semester
and think of the hydrogen atom as a positive central charge +e with mass m,, (the proton) orbited
classically by a charge with opposite sign —e and mass m,. (the electron). Due to m, > m,
you may consider the proton stationary, r,(f) = 0, and the electron’s position parameterized by
r.(t) = ag cos(w.t)e, + ag sin(w.t)e,, where q is the radius of the orbit.

a) Use your knowledge from classical mechanics to determine the frequency w, of the electron 1@
motion.

b) Calculate the vector potential A(r,t) of this rotating dipole. What is the radiated power of the 17®
atom?

c) Estimate the lifetime of the atom. To this end assume that the radius of the orbit ag is given by  17'®
the Bohr radius ag. Does the result match your expectations?

Problem 11.2: Rotating Quadrupole [Oral | 3 pt(s)]

Learning objective

In this exercise we will learn about the time dependent quadrupole tensor and electromagnetic waves
radiated by a rotating quadrupole. Then we will derive the angular power distribution of a rotating
quadrupole and compare it with the angular power distribution of an oscillating dipole.

Consider the quadrupole setup depicted below, with two pairs of opposing charges +¢ fixed at the
corners of a square of size a. The square lies in the zy-plane and rotates with frequency w = we,
around its center.

We will focus on the electromagnetic waves radiated by this setup.

a) Write down the time-dependent charge distribution p(, t) and calculate the quadrupole tensor 17

Qi;(t) = /R3 &’z p(x,t) (3ziz; — |2|°5;;) - (1)
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For this, consider the initial condition where the +¢ charges are located on the x-axis at time
t=0.

Result:
Q3i :Qi3 :07 L= 17273
Qi1 = —Q22 = 3qa® Ree >
Q21 = Q12 = 3qa® Reie *"
b) Show that the general expression for the angular power distribution in the far-field reads s
dP g AkS 12
— = — 7 X QJor 2
a0~ masss T @ @
with 7 = r/|r|. Here, () is the quadrupole tensor, a 3 x 3 amplitude matrix defined by compon-
ents ();; without the oscillating factor.
Hints: The fields in the far-field approximation are given by
1.3 . ptkr
Mok e Qo and E—cBx 7, (3)
4 6 7
and the angular power distribution reads
dP 72
= . (ExB. 4
Q" 2 (EXE) (4)
c¢) Evaluate Eq. (2) with k£ = 2w/c in spherical coordinates for the given setup of rotating quadrupole 17
in the Fig. Justify why the frequency is 2w? Compare the result of rotating quadrupole with the
angular power distribution of an oscillating dipole.
Hint: Use the result from task a).
Problem 11.3: Spherical Bessel Functions [Written | 5 pt(s)]
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Learning objective

The spherical Bessel and Hankel functions j; and hl(l) = hl+ play a crucial role for the expansion of the
vector potential. In this exercise we will derive explicit expressions for these functions.

The spherical Bessel equation describes the radial part R;(r) of the solution ®(r, 0, ¢) = Ry(r)Y, (0, )
of the Helmoltz equation [A + £?|® = (0 and reads

2 l(l+1
{32—1——&,3—1—(1— ( —Z ))} Ri(z)=0 for l e Ny (5)
x x
with = kr.
a) As a warm-up, show that for half integer v = [ + % the substitution R;(x) = KX/? converts the 17¢
spherical Bessel equation to the ordinary Bessel equation
5 1 V2
Oy + =0+ | 1—— | |w(z)=0. (6)
x x

Provide solutions of Eq. (5) in terms of the Bessel and Neumann functions J,(z) and N, (z)
which have been introduced in the lecture during the discussion of electrostatics.

The solutions derived from J,(z) and N, (z) are denoted as j;(x) and n;(z) and referred to as
spherical Bessel and Neumann functions, respectively (up to normalizing factors). In the remainder
of this exercise, you will derive explicit expressions for these functions.

b) To this end, prove that the spherical Hankel functions 1°1(9)
2 l 100 ]
hi (x) = :F_(“’?' ) / dt e (1 — t?)’ (7)
S

are solutions of Eq. (5) for z > 0 and [ € N,.

Hints: Use 1022 = 22710, + 02 and write the integrand as a total derivative with respect to t.

c¢) Now show that h;" satisfy the recursion relation 1P1(6)
dhi(z) 1
e U COR ISR COR (8)

d) The spherical Hankel functions are a basis of the two-dimensional solution space for every [. 17®
Another common basis is given by the linear combinations

. 1 _ 1 _

i) = @)+ R @) and () = g (@)~ (0) ©)
which are the spherical Bessel and Neumann functions as introduced in task a).
Use the recursion from task c) to prove the explicit expressions

j) = (o) (1i)l sin(z) (102

zdx

() = —(-o) (16%) o) (10b)

These are known as Rayleigh’s formulas.

Hint: Use mathematical induction.
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e) Use the above results to write down j;(z), n;(z) and b (z), h; (x) for [ = 0,1 and sketch the 17®
graphs of ji(z), ni(x).
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