
THEO II I : ELEKTRODYNAMIK Problem Set 11

Prof. Dr. Hans-Peter Büchler June 26th, 2023

Institute for Theoretical Physics III, University of Stuttgart SS 2023

Problem 11.1: Lifetime of “classical” atoms [Oral | 3 pt(s) ]

ID: ex_lifetime_of_classical_atoms:edyn23

Learning objective

In this problem we will calculate the lifetime of a classical atom in presence of an oscillating dipole. We

will learn about the stability of the atom caused by the dipole radiation in a classical and a quantum

picture.

Pretend you forgot everything you have learned in your quantum mechanics course last semester

and think of the hydrogen atom as a positive central charge +e with mass mp (the proton) orbited

classically by a charge with opposite sign −e and mass me (the electron). Due to mp � me

you may consider the proton stationary, rp(t) ≡ 0, and the electron’s position parameterized by

re(t) = a0 cos(ωet)ex + a0 sin(ωet)ey, where a0 is the radius of the orbit.

a) Use your knowledge from classical mechanics to determine the frequency ωe of the electron 1pt(s)

motion.

b) Calculate the vector potential A(r, t) of this rotating dipole. What is the radiated power of the 1pt(s)

atom?

c) Estimate the lifetime of the atom. To this end assume that the radius of the orbit a0 is given by 1pt(s)

the Bohr radius aB . Does the result match your expectations?

Problem 11.2: Rotating Quadrupole [Oral | 3 pt(s) ]

ID: ex_rotating_quadropole:edyn23

Learning objective

In this exercise we will learn about the time dependent quadrupole tensor and electromagnetic waves

radiated by a rotating quadrupole. Then we will derive the angular power distribution of a rotating

quadrupole and compare it with the angular power distribution of an oscillating dipole.

Consider the quadrupole setup depicted below, with two pairs of opposing charges ±q fixed at the

corners of a square of size a. The square lies in the xy-plane and rotates with frequency ω = ωez

around its center.

We will focus on the electromagnetic waves radiated by this setup.

a) Write down the time-dependent charge distribution ρ(x, t) and calculate the quadrupole tensor 1pt(s)

Qij(t) =

∫
R3

d3x ρ(x, t)
(
3xixj − |x|2δij

)
. (1)
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For this, consider the initial condition where the +q charges are located on the x-axis at time

t = 0.

Result:

Q3i = Qi3 = 0, i = 1, 2, 3

Q11 = −Q22 = 3qa2 Re e−2iωt

Q21 = Q12 = 3qa2 Re ie−2iωt

b) Show that the general expression for the angular power distribution in the far-field reads 1pt(s)

dP

dΩ
=

µ0

4π

c3k6

288π
|r̂ ×Q0r̂|2 (2)

with r̂ = r/|r|. Here, Q0 is the quadrupole tensor, a 3× 3 amplitude matrix defined by compon-
ents Qij without the oscillating factor.

Hints: The fields in the far-field approximation are given by

B = −µ0

4π

ik3c

6

eikr

r
r̂ ×Q0r̂ and E = cB × r̂ , (3)

and the angular power distribution reads

dP

dΩ
=

r2

2µ0
r̂ · (E ×B∗) . (4)

c) Evaluate Eq. (2) with k = 2ω/c in spherical coordinates for the given setup of rotating quadrupole 1pt(s)

in the Fig. Justify why the frequency is 2ω? Compare the result of rotating quadrupole with the

angular power distribution of an oscillating dipole.

Hint: Use the result from task a).

Problem 11.3: Spherical Bessel Functions [Written | 5 pt(s) ]

ID: ex_spherical_bessel_functions:edyn23
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Learning objective

The spherical Bessel and Hankel functions jl and h
(1)
l ≡ h+l play a crucial role for the expansion of the

vector potential. In this exercise we will derive explicit expressions for these functions.

The spherical Bessel equation describes the radial partRl(r) of the solutionΦ(r, θ, ϕ) = Rl(r)Ylm(θ, ϕ)
of the Helmoltz equation [∆ + k2]Φ = 0 and reads[

∂2
x +

2

x
∂x +

(
1− l(l + 1)

x2

)]
Rl(x) = 0 for l ∈ N0 (5)

with x = kr.

a) As a warm-up, show that for half integer ν = l + 1
2
the substitution Rl(x) =

ul(x)√
x

converts the 1pt(s)

spherical Bessel equation to the ordinary Bessel equation[
∂2
x +

1

x
∂x +

(
1− ν2

x2

)]
ul(x) = 0. (6)

Provide solutions of Eq. (5) in terms of the Bessel and Neumann functions Jν(x) and Nν(x)
which have been introduced in the lecture during the discussion of electrostatics.

The solutions derived from Jν(x) and Nν(x) are denoted as jl(x) and nl(x) and referred to as

spherical Bessel and Neumann functions, respectively (up to normalizing factors). In the remainder

of this exercise, you will derive explicit expressions for these functions.

b) To this end, prove that the spherical Hankel functions 1pt(s)

h±
l (x) = ∓(x/2)l

l!

∫ i∞

±1

dt eixt(1− t2)l (7)

are solutions of Eq. (5) for x > 0 and l ∈ N0.

Hints: Use x−1∂2
xx = 2x−1∂x + ∂2

x and write the integrand as a total derivative with respect to t.

c) Now show that h±
l satisfy the recursion relation 1pt(s)

dh±
l (x)

dx
=

l

x
h±
l (x)− h±

l+1(x) . (8)

d) The spherical Hankel functions are a basis of the two-dimensional solution space for every l. 1pt(s)

Another common basis is given by the linear combinations

jl(x) =
1

2
[h+

l (x) + h−
l (x)] and nl(x) =

1

2i
[h+

l (x)− h−
l (x)] (9)

which are the spherical Bessel and Neumann functions as introduced in task a).

Use the recursion from task c) to prove the explicit expressions

jl(x) = (−x)l
(
1

x

d

dx

)l
sin(x)

x
(10a)

nl(x) = −(−x)l
(
1

x

d

dx

)l
cos(x)

x
(10b)

These are known as Rayleigh’s formulas.

Hint: Use mathematical induction.
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e) Use the above results to write down jl(x), nl(x) and h+
l (x), h

−
l (x) for l = 0, 1 and sketch the 1pt(s)

graphs of jl(x), nl(x).
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