
ADVANCED QUANTUM THEORY Problem Set 5

Prof. Dr. Hans-Peter Büchler November 13th, 2024

Institute for Theoretical Physics III, University of Stuttgart WS 2024/25

Problem 5.1: Representations of the Symmetric Group [Oral | 4 (+3 bonus) pt(s) ]

ID: ex_representations_of_the_symmetric_group:aqt2425

Learning objective

Here you verify some of the statements from the lecture on representations of the symmetric group

in the many-particle Hilbert space. In particular, you study the properties of the symmetrizer and

antisymmetrizer to familiarize yourself with these rather abstract operators.

First, we consider the Hilbert space Hn = L2(R3)⊗ · · · ⊗ L2(R3) of n (distinguishable) particles

with position basis |x1, . . . , xn〉 in R3. The representation of the permutation group Sn is defined by

Uπ |x1, . . . , xn〉 := |xπ1 , . . . , xπn〉 (1)

for all permutations π ∈ Sn.

a) Show that Uπ defines a representation of Sn on Hn, i.e., show that 1pt(s)

Uπ · Uρ = Uπρ (2)

for all π, ρ ∈ Sn. Here, “·” denotes the multiplication of operators on Hn and πρ is the group
multiplication on Sn (the concatenation of permutations).

b) Prove that Uπ is a unitary representation, i.e., U †
π = U−1

π . 1pt(s)

c) Show that Uπ acts on the wave functions Ψ(x1, . . . , xn) = 〈x1, . . . , xn|Ψ〉 as defined in the 1pt(s)

lecture, i.e.,

UπΨ(x1, . . . , xn) = Ψ
(
xπ−1

1
, . . . , xπ−1

n

)
(3)

with π−1 the inverse of π in Sn.

Let us now focus on a finite-dimensional single-particle Hilbert space H ' Cd (imagine a particle

that hops on a lattice with d sites so that its position is discrete, x ∈ {1, . . . , d}). The Hilbert space

of n particles Hn = Cd ⊗ · · · ⊗ Cd is then dimHn = dn dimensional.

The representation of permutations is given by Eq. (1) where now xi ∈ {1, . . . , d} with the standard

basis |x1, . . . , xn〉 such that 〈x1, . . . , xn|y1, . . . , yn〉 = δx1,y1 . . . δxn,yn .

As in the lecture, define the (anti-)symmetrizer S (A) as

S :=
1

n!

∑
π∈Sn

Uπ and A :=
1

n!

∑
π∈Sn

(−1)πUπ (4)

and the (anti-)symmetric subspaces as Hs = {S |Ψ〉 | |Ψ〉 ∈ Hn} and Ha = {A |Ψ〉 | |Ψ〉 ∈ Hn},
respectively.
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d) Prove that S and A are self-adjoint projectors, i.e., show that S† = S and S2 = S (and the same 1pt(s)

for A).

Hint: Use the results from a) and b) and that Sn is a group.

∗e) Show that dimHa =
(
d
n

)
. What happens for n > d? +1pt(s)

∗f) Similarly, show that dimHs =
(
n+d−1
d−1

)
. What happens now for n > d? +2pt(s)

Hint: How can you describe basis states inHs? Use combinatorial arguments to count them by means of

d− 1 “separators” that define d “buckets.”

Problem 5.2: Identical Fermions in a Potential Well [Written | 3 pt(s) ]

ID: ex_identical_fermions_in_a_potential_well:aqt2425

Learning objective

In the lecture you learned that the wave function of multiple fermions must be antisymmetric under the

exchange of particles. Here you study the consequences of this rule by means of a simple toy model.

In particular, you elaborate on the consequences of the antisymmetry in the presence of interactions

between the fermions.

We consider two identical spin-1/2 fermions in a one-dimensional potential given by

V (x) =

{
0 |x| ≤ 1

∞ otherwise .
(5)

The (dimensionless) single-particle Hamiltonian for the ith particle is given by

H(i) = −1

2
∂2xi

+ V (xi) . (6)

a) Explain why we can treat the orbital motion and the spin dynamics separately, that is, explain 1pt(s)

why we can write the single-particle eigenstates as a product of orbital- and spin wave functions.

Write down the orbital wave functions and eigenenergies of the two single-particle eigenstates

that are lowest in energy.

b) Determine the ground state and the ground state energy of a two-fermion system with Hamilto- 1pt(s)

nian H =
∑2

i=1H
(i) in the following two cases:

i. For a spin state that is antisymmetric under exchange of the two fermions, i.e., the singlet

state (|↑↓〉 − |↓↑〉)/
√
2.

ii. For a spin state that is symmetric under exchange of the two fermions, i.e., one of the triplet

states |↑↑〉, |↓↓〉 or (|↑↓〉+ |↓↑〉)/
√
2.

c) Examine the influence of a contact-interaction between the two fermions which is described by 1pt(s)

the interaction potential λ δ(x1 − x2) with strength λ ∈ R. To this end, calculate the energy

correction in first order perturbation theory (assuming |λ| � 1) for both the singlet state and

the triplet states.

Explain why the perturbative result for the triplet states is correct for arbitrary λ.
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Problem 5.3: Gross-Pitaevskii Equation [Oral | 3 pt(s) ]

ID: ex_gross_pitaevskii_equation:aqt2425

Learning objective

We consider a system of identical bosons and determine its the ground state. As we will see, the effect of

weak interactions between the particles can be studied approximately by means of a variational principle

leading to the so-called Gross-Pitaevskii equation.

Consider N non-interacting bosons of mass m in a one-dimensional harmonic trap Utrap(x) =
1
2
mω2x2.

a) Write down the ground state wave function for N bosons. What is the generalization to an 1pt(s)

arbitrary potential U(x) with the single-particle ground state wave function φ0(x)?

b) Now introduce a contact interaction of the form V (xi−xj) = V0δ(xi−xj) between the particles. 1pt(s)

The Hamiltonian of this system is given by

H =
N∑
i=1

(
− h̄2

2m

∂2

∂x2i
+ U(xi)

)
+ V0

∑
i<j

δ(xi − xj) . (7)

Write down the expectation value of this Hamiltonian with respect to the ground state wave

function of the non-interacting system for an arbitrary external potential U(x) as calculated
in a).

c) We treat the system by a variational principle where we approximate the ground state by a 1pt(s)

product wave function that minimizes the energy expectation value ofH (this ansatz is known as

Hartree-Fock approximation; the result of this minimization procedure is an exact eigenstate only

for V0 = 0, i.e., non-interacting bosons). Our variational parameter is the rescaled single-particle

wave function ψ(x) defined as

ψ(x) =
√
Nφ0(x) . (8)

The solution of the variational principle ψ(x) will differ from the single-particle ground state

wave function of non-interacting bosons due to the interaction between the particles.

Show that the variational principle that minimizes the energy expectation value calculated in b)

leads to the Gross-Pitaevskii equation

µψ(x) = − h̄2

2m
∂2xψ(x) + U(x)ψ(x) + V0|ψ(x)|2ψ(x) (9)

with the chemical potential µ. Note the non-linearity due to the interaction V0!

Hints:

• Using the expression calculated in b), neglect all terms of order 1/N and treat the expectation value

as a functional of the complex-valued function ψ(x). The result should read

E[ψ,ψ∗] =

∫
dx

(
h̄2

2m
|∂xψ(x)|2 + U(x)|ψ(x)|2 + 1

2
V0|ψ(x)|4

)
. (10)
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• Minimize this functional with respect to ψ(x) and ψ∗(x) with the constraint

N =

∫
dx |ψ(x)|2 . (11)

This constraint can be taken into account by the method of Lagrange multipliers where the chemical

potential µ is the Lagrangian multiplier that fixes the particle number (11).
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