
ADVANCED QUANTUM THEORY Problem Set 11

Prof. Dr. Hans-Peter Büchler January 8th, 2025

Institute for Theoretical Physics III, University of Stuttgart WS 2024/25

Problem 11.1: Time-Dependent Perturbation Theory [Oral | 2 (+1 bonus) pt(s) ]

ID: ex_time_dependent_perturbation_theory:aqt2425

Learning objective

The first subtask is an application of time-dependent perturbation theory in first order. The goal is to

identify the correct transition amplitude and evaluate the integrations analytically. The second subtask

is a challenging calculation to derive the exact solution of the problem—a useful repetition/application

of important methods in quantum mechanics. This problem is one of the few examples where the time

evolution can be solved analytically (which allows for a verification of perturbation theory).

We investigate a one-dimensional harmonic oscillator with mass m, charge e, and frequency ω in a

time-dependent electric field E(t). The Hamiltonian is of the form

H = H0 +H ′(t) ,

where H0 =
p2

2m
+

m

2
ω2x2 (harmonic oscillator)

and H ′(t) = exE(t) (perturbation) . (1)

The time-dependency of the external electric field is given by

E(t) =
A

τ
√
π
e−(t/τ)2 cos(Ωt) , (2)

where A ∈ R is a constant, τ > 0 is a decay rate and Ω > 0 is a frequency.

a) Calculate the transition probability P0→n(t, t0) from the ground state |0〉 at t0 → −∞ to an 1pt(s)

excited state |n〉 at t → +∞ in first order perturbation theory. What happens for τ → 0?

Hint: Use x =
√

h̄
2mω

(
a† + a

)
to evaluate the matrix element.

b) The transition probability can also be calculated exactly using the following identity 1pt(s)

T̂ e
−i

∫ t
t0

dt′
(
f(t′)a+f∗(t′)a†

)
= e

−i
∫ t
t0

dt′f(t′)a
e
−i

∫ t
t0

dt′f∗(t′)a†
e
∫ t
t0

dt′f∗(t′)
∫ t′
t0

dt′′f(t′′)
(3)

which is a generalization of the well-known relation for the displacement operator. Determine

the time evolution for the initial state |0〉, and show that the transition probabilities P0→n(t, t0)
for t0 → −∞ and t → +∞ take the form

P0→n =
K2n

n!
e−K2

with K =
eA

2
√
2mωh̄

e−
τ2(ω+Ω)2

4

(
1 + eτ

2ωΩ
)

(4)

and compare the result with a).
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∗c) Prove Eq. (3). +1pt(s)

Hint: Apply the same method as the proof of the relation eA+B = eA eB e−[A,B]/2 requires.

Problem 11.2: Spontaneous decay of the Hydrogen Atom [Written | 3 pt(s) ]

ID: ex_spontaneous_decay_hydrogen_atom:aqt2425

Learning objective

In this exercise you will calculate which transitions in the Hydrogen atom can occur spontaneously.

Based on this you then will calculate the transition rates for electrons from the n = 2 manifold back to

the ground state.

Consider an excited Hydrogen atom in the state |n, l,m〉 inside the electromagnetic vacuum. We try

to find the possible transitions into a state |n′, l′,m′〉 by emitting a photon in the mode |nk,λ = 1〉.
Assuming the light-matter interaction is adiabatically turned on and offwe can calculate the transition

in first order perturbation theory as

〈n′, l′,m′;nk,λ = 1|Ψ(t)〉 = 1

ih̄
e−iEf (t−t0)

∫ t

t0

dt1 〈n′, l′,m′;nk,λ = 1|Hint(t1) |n, l,m;nk,λ = 0〉 . (5)

In the lecture It was shown that this results in the transition rate

Γ =
d

dt
| 〈n′, l′,m′;nk,λ = 1|Ψ(t)〉 |2 = 2αω

3

(h̄ω)2

mc2ER

|rab/aB|2,

where ER is the Rydberg energy, aB the Bohr radius and ω is the frequency resonant to the transition

En → En′ . Further, the dipole matrix element rab is given by

rab = 〈n′, l′,m′| r |n, l,m〉 . (6)

a) First rewrite r = (x, y, z)T = r(sin θ cosφ, sin θ sinφ, cos θ)T . Then express this vector in terms 1pt(s)

of the spherical harmonics Yl,m(θ, φ). Use this to find the transitions which are allowed in first

order.

b) Explicitly calculate the dipole matrix elements for the n = 2 → n = 1 transition. 1pt(s)

c) For an Hydrogen atom prepared in any of the n = 2 states, what are the average life times? 1pt(s)

Problem 11.3: Squeezed States [Oral | 3 pt(s) ]

ID: ex_squeezed_states:aqt2425

Learning objective

In Problem Set 7, we have studied coherent states. The quantum state of the harmonic oscillator, that

minimizes the uncertainty relation with the uncertainty equally distributed between the non-commuting

observables Q and P , is such a coherent state. In this exercise, we study squeezed states, for which the

uncertainty of one of the observables is smaller than for the coherent state. To respect the uncertainty

principle, the uncertainty of the other observable must be larger than for the coherent state. Squeezed
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states of light are an example of non-classical light.

For the harmonic oscillator with frequency ω, coherent states obey

〈∆Q2〉 =
h̄

2mω
and 〈∆P 2〉 =

h̄mω

2
(7)

and thus squeezed states fulfill

〈∆Q2〉 ≤ h̄

2mω
or 〈∆P 2〉 ≤ h̄mω

2
. (8)

We define the squeeze operator S(ε) as

S(ε) = exp

(
ε∗

2
a2 − ε

2

(
a†
)2)

. (9)

a) Write the operatorsQ and P in terms of the creation and annihilation operators of the harmonic 1pt(s)

oscillator and prove that coherent states satisfy equation (7).

b) Derive the following relations for S(ε) with ε = r exp (iφ), where r is an arbitrary radius and φ 1pt(s)

an arbitrary phase:

S†(ε) = S−1(ε) = S(−ε) , (10)

S†(ε) aS(ε) = a cosh(r)− a† eiφ sinh(r) , (11)

S†(ε) a† S(ε) = a† cosh(r)− a e−iφ sinh(r) . (12)

c) Verify that the states |α , ε〉 = D(α) S(ε) |0〉 are squeezed states. Here,D(α) = exp
(
αa† − α∗a

)
1pt(s)

is the displacement operator.
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