Problem 5.1: Angular momentum commutation relations
ID: ex_j_angularmo_relations:aqt2324

Learning objective

In this exercise, you will prove the commutation relations that were stated in the lecture.

A generalized angular momentum $\boldsymbol{J}=\left(J_{x}, J_{y}, J_{z}\right)$ operator has the following property

$$
\begin{equation*}
\left[J_{k}, J_{l}\right]=i \hbar \epsilon_{k l m} J_{m} \quad k, l, m=x, y, z . \tag{1}
\end{equation*}
$$

If $\boldsymbol{J}^{2}=J_{x}^{2}+J_{y}^{2}+J_{z}^{2}$ and $J_{ \pm}=J_{x}+i J_{y}=J_{\mp}^{\dagger}$, show the following:
a) $\left[J_{z}, J_{ \pm}\right]= \pm \hbar J_{ \pm}$
b) $\left[J_{+}, J_{-}\right]=2 \hbar J_{z}$
c) $J_{ \pm} J_{\mp}=\boldsymbol{J}^{2}-J_{z}\left(J_{z} \mp \hbar\right)$
d) $\left[\boldsymbol{J}^{2}, J_{ \pm}\right]=0$

Problem 5.2: Clebsch-Gordan coefficients and spin-orbit coupling [Oral|4(+2 bonus) pt(s)]
ID: ex_clebsch_gordan_coefficients_spin_orbit_coupling:aqt2324

Learning objective

In this problem you will apply the angular momentum addition theorem. As an important use case, we consider the spin-orbit coupling in the hydrogen atom, which is the leading relativistic correction.

The spin-orbit coupling between the electron's spin S and the orbital angular momentum \mathbf{L} for a hydrogen atom is given by the Hamiltonian

$$
\begin{equation*}
H_{\mathrm{LS}}=f(r) \boldsymbol{L} \cdot \boldsymbol{S}=f(r) \sum_{\alpha=x, y, z} L_{\alpha} \otimes S_{\alpha} \tag{2}
\end{equation*}
$$

where $f(r)=e^{2} / 2 m_{e}^{2} c^{2} r^{3}$. The spin-orbit coupling can be seen as a perturbation to the nonrelativistic Hamiltonian $H_{0}=\boldsymbol{P}^{2} / 2 m-e^{2} / r$ of the hydrogen atom.
a) Define the total angular momentum operator as

$$
\begin{equation*}
\boldsymbol{J}=\boldsymbol{L}+\boldsymbol{S}=\boldsymbol{L} \otimes \mathbb{1}+\mathbb{1} \otimes \boldsymbol{S} \tag{3}
\end{equation*}
$$

and show that \boldsymbol{J}^{2} and J_{z} commute both with H_{0} and H_{LS}.
b) Consider the subspace with orbital angular momentum ℓ and spin s. We can write the eigenstates $|j, m\rangle$ of \boldsymbol{J}^{2} and J_{z} as linear combinations of $L_{z^{-}}$and S_{z}-eigenstates $\left|m_{\ell}, m_{s}\right\rangle=\left|\ell, m_{\ell}\right\rangle \otimes\left|s, m_{s}\right\rangle$,

$$
\begin{equation*}
|j, m\rangle=\sum_{m_{\ell}, m_{s}} c\left(m_{\ell}, m_{s} ; j, m\right)\left|m_{\ell}, m_{s}\right\rangle \tag{4}
\end{equation*}
$$

The coefficients c are called Clebsch-Gordan coefficients. Due to their ubiquity in quantum physics there are comprehensive tables available, e.g.,

```
http://pdg.lbl.gov/2011/reviews/rpp2011-rev-clebsch-gordan-coefs.pdf.
```

Use this table to write down the change of basis (4) in the subspace with $\ell=1$ and $s=1 / 2$ explicitely.
${ }^{*}$ c) Derive the Clebsch-Gordan coefficients in b) by hand.
Hint: Start with the stretched state $\left|j=3 / 2, m_{j}=3 / 2\right\rangle$ and use the ladder operator $J_{-}=J_{x}-i J_{y}$ which acts as

$$
\begin{equation*}
J_{-}|j, m\rangle=\hbar \sqrt{j(j+1)-m(m-1)}|j, m-1\rangle . \tag{5}
\end{equation*}
$$

Problem 5.3: Bound states of a spherical potential well
[Written | 6 pt(s)]
ID: ex_bound_states_spherical_potential_well:aqt2324

Learning objective

Here we will derive the bound states of a spherically symmetric potential well. To do so, we will exploit the rotation symmetry of the problem and show that the radial solutions are given by spherical Bessel functions (see lecture). The idea is to explicitly derive the transcendental equation that determines the eigenenergies for bound states with angular momentum $l=0$.

Consider the Hamiltonian of a particle in three dimensions

$$
\begin{equation*}
H=\frac{\boldsymbol{p}^{2}}{2 m}+V(\boldsymbol{r}) \tag{6}
\end{equation*}
$$

with the spherically symmetric and piecewise constant potential

$$
V(\boldsymbol{r})=V(r)= \begin{cases}0 & r>R \tag{7}\\ V_{0} & r \leq R\end{cases}
$$

with $r=|\boldsymbol{r}|, R>0$ the radius of the potential well and $V_{0}<0$ the potential depth.
Your goal is to find the bound states and eigenenergies of this system and the conditions that are necessary for their existence.
a) Make the separation ansatz $\Psi(\boldsymbol{r})=R_{l}(r) \cdot Y_{l m}(\theta, \varphi)$ with spherical harmonics $Y_{l m}$ and show that the eigenvalue problem reduces to

$$
\begin{equation*}
\left[\rho^{2} \partial_{\rho}^{2}+2 \rho \partial_{\rho}+\rho^{2}-l(l+1)\right] \tilde{R}_{l}(\rho)=0 \tag{8}
\end{equation*}
$$

with $\rho \equiv K_{r} r$ and $\tilde{R}_{l}(\rho) \equiv R_{l}(r)$ where $K_{r} \equiv \sqrt{\frac{2 m(E-V(r))}{\hbar^{2}}}$.
b) Write down the general solution of the radial problem in the two regions $r>R$ and $r \leq R$ for a given angular momentum l and formulate the continuity and boundary conditions that the eigenstates must satisfy.
Hint: Use that the solutions of the differential equation

$$
\begin{equation*}
\left[x^{2} \partial_{x}^{2}+2 x \partial_{x}+x^{2}-l(l+1)\right] y(x)=0 \tag{9}
\end{equation*}
$$

are given by the spherical Bessel functions

$$
\begin{equation*}
j_{l}(x)=(-x)^{l}\left(\frac{1}{x} \partial_{x}\right)^{l} \frac{\sin (x)}{x} \quad \text { and } \quad y_{l}(x)=-(-x)^{l}\left(\frac{1}{x} \partial_{x}\right)^{l} \frac{\cos (x)}{x} \tag{10}
\end{equation*}
$$

for $l \in \mathbb{N}_{0}$. (The functions y_{l} are sometimes denoted n_{l} and referred to as spherical Neumann functions.) Write the eigenstates in terms of these functions.
c) Consider the simplest case for $l=0$. Find explicit expressions for the bound states and derive a transcendental equation to determine their eigenenergies. At which potential depth V_{0} appears the first bound state?
Hint: Use your knowledge of the one-dimensional potential well to analyze the transcendental equation.

