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Problem 2.1: Time evolution of a three-level quantum mechanical system [Oral | 5 pt(s) ]

ID: ex_3_state_qm_time_dependency:aqt2324

Learning objective

This exercise illustrates how to obtain expected values from typical observables in quantum mechanical

systems with their corresponding probabilities. Additionally, we can also see how these values change as

a function of time.

We consider a system with a three-dimensional Hilbert space, which is defined by the orthonormal

basis |1〉, |2〉, |3〉. In this basis the Hamiltonian Ĥ is given by

Ĥ = h̄ω(|1〉〈1|+ 2|2〉〈2|+ 2|3〉〈3|) = h̄ω

 1 0 0
0 2 0
0 0 2

 (1)

with a constant frequency ω. Assume that at a time t = 0 the system is in the state

|ψ (0)〉 = 1√
2
|1〉+ 1

2
|2〉+ 1

2
|3〉. (2)

a) If we measure the energy of the system at t = 0, which values can we measure and with which 1pt(s)

probabilities do they occur? Calculate the expectation value of 〈Ĥ〉 and the variance ∆Ĥ .

b) Still at t = 0, if we wanted to obtain a measurement of observables Â and B̂ given by 1pt(s)

Â = a

 1 0 0
0 0 1
0 1 0

 and B̂ = b

 0 1 0
1 0 0
0 0 1

 (3)

which values would we be able to find? What are the associated probabilities?

c) Now we allow the system to evolve in time, i.e., t > 0. Calculate the state |ψ (t)〉. 1pt(s)

d) How do the expected values of Â and B̂ evolve over time? In other words, calculate 〈Â〉 (t) 1pt(s)

〈B̂〉 (t) and make a simple plot (or sketch) of these as a function of time.

e) What result do you obtain if you make a measurement of the observables Â and B̂ at a time t? 1pt(s)

What are the maximum and minimum values of these measurements for them?

Problem 2.2: Harmonic oscillator in an electric field [Oral | 4 pt(s) ]

ID: ex_harmonic_oscillator_linear_term:aqt2324
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Learning objective

Here we will solve the Harmonic oscillator in presence of an external perturbation - electric field.

Problems as such are often discussed in the context of perturbation theory. However, this problem can

be solved exactly, without resorting to perturbative methods.

Consider a harmonic oscillator with massm, frequency ω and momentum P̂ and position operators

Q̂ in presence of a static electric field E acting on charge q. The Hamiltonian then is given by

H = H0 + EqQ̂, H0 =
P̂ 2

2m
+
mω2Q̂2

2
. (4)

a) As a first step, diagonalize the Hamiltonian H0 by introducing the creation and annihilation 1pt(s)

operators (see lecture notes), and obtain the energy eigenvalues and wavefunctions.

b) Now in order to solve the full problem, rewrite H to H = αP̂ 2 + β(Q̂ + γ)2 + δ. Find the 1pt(s)

corresponding expressions for α, β, γ, δ.

c) Finally, write down the energies and the wavefunctions for the Hamiltonian obtained above. 2pt(s)

Problem 2.3: Harmonic oscillator in the Heisenberg picture [Written | 4 (+2 bonus) pt(s) ]

ID: ex_harmonic_oscillator_Heisenberg_picture:aqt2324

Learning objective

In this problem you will use the Heisenberg formulation of quantum mechanics to compute the position

and momentum expectation values of a one dimensional harmonic oscillator. Using the relation to the

familiar operators in the Schrödinger picture (eq. 5), you will derive the new ladder operators (aH(t),

a†H(t)) and the position and momentum operators (QH(t), PH(t)) in the Heisenberg picture which will

now depend on time. One goal is to remark the connection between the equations of motion for operators

in the Heisenberg picture and Hamilton’s equations in classical mechanics.

The operators in the Heisenberg picture and operators in the Schrödinger picture are related through

AH(t) = U−1(t)ASU(t) with U(t) = e−
i
h̄
Ht. (5)

U(t) is the time evolution operator which obeys the Schrödinger equation ih̄∂tU(t) = HU(t). We

define the time-independent states in the Heisenberg picture as |ψH〉 := |ψS(t = 0)〉. The index H
stands for operators and states in the Heisenberg picture while the index S refers to the Schrödinger

picture.

a) Derive the Heisenberg equation of motion for operators, 1pt(s)

∂tAH(t) =
1

ih̄
[AH(t), H], (6)

starting from Eq. (5). How does this relation change if AS also depends on time (see (HBG)

formula on lecture notes)?
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b) We now consider the Hamiltonian for a harmonic oscillator 1pt(s)

H =
P 2

2m
+
mω2

2
Q2 = h̄ω

(
a†SaS +

1

2

)
, [aS, a

†
S] = 1. (7)

Show that

aH(t) = e−iωtaS, a†H(t) = eiωta†S. (8)

Hint: Let aH(t) act onto an eigenstate of the harmonic oscillator or use the Baker-Campbell-

Hausdorff formula.

Intermediate descriptions for next block of tasks.

∗c) Use the results of the previous task to derive the relations +2pt(s)

QH(t) = QH(t;PS, QS), PH(t) = PH(t;PS, QS). (9)

d) Show for the harmonic oscillator that the Heisenberg equations of motion (6) lead to Hamilton’s 1pt(s)

classical equations of motion for the operators QH(t) and PH(t).

e) We define at time t = 0 the state |ψS(t = 0)〉 = |ψH〉 = 1√
2
(|1〉+ |2〉) =: |γ〉 (in the basis of the 1pt(s)

number operator N |n〉 = n|n〉). Compute the expectation values

〈QH(t)〉γ = 〈γ|QH(t)|γ〉, 〈PH(t)〉γ = 〈γ|PH(t)|γ〉, (10)

for arbitrary times t.
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