Problem 11.1: Properties of bosonic operators

Learning objective

The first part of this problem reviews properties of bosonic creation and annihilation operators in a single-mode Fock space, whereas the last part generalizes this concept to many-particle systems.

In order to solve the harmonic oscillator, one can introduce bosonic creation and annihilation operators satisfying the commutation relation

$$
\begin{equation*}
\left[b, b^{\dagger}\right]=1 \tag{1}
\end{equation*}
$$

The occupation number operator is given by $\hat{n}=b^{\dagger} b$ with eigenstates $|n\rangle$ and eigenvalues n.
a) Using (1), show that $b|n\rangle$ and $b^{\dagger}|n\rangle$ are eigenstates of \hat{n}.
b) Prove the following relations:

$$
\begin{align*}
b|n\rangle & =\sqrt{n}|n-1\rangle \tag{2}\\
b^{\dagger}|n\rangle & =\sqrt{n+1}|n+1\rangle . \tag{3}
\end{align*}
$$

c) Show that there has to be a state $|G\rangle$ with $b|G\rangle=0$ and prove that n is an integer.

Hint: Use the fact that there are no states with negative norm.
d) Using the commutation relations of operators in bosonic Fock space,

$$
\begin{equation*}
\left[b_{i}, b_{j}^{\dagger}\right]=\delta_{i j}, \quad\left[b_{i}, b_{j}\right]=0, \quad\left[b_{i}^{\dagger}, b_{j}^{\dagger}\right]=0 \tag{4}
\end{equation*}
$$

and the states

$$
\begin{equation*}
\left|n_{1}, \ldots, n_{i}, \ldots\right\rangle=\ldots \frac{\left(b_{i}^{\dagger}\right)^{n_{i}}}{\sqrt{n_{i}!}} \cdots \frac{\left(b_{1}^{\dagger}\right)^{n_{1}}}{\sqrt{n_{1}!}}|0\rangle \tag{5}
\end{equation*}
$$

prove the following relations:

$$
\begin{align*}
b_{i}\left|n_{1}, \ldots, n_{i}, \ldots\right\rangle & =\sqrt{n_{i}}\left|n_{1}, \ldots, n_{i}-1, \ldots\right\rangle, \tag{6}\\
b_{i}^{\dagger}\left|n_{1}, \ldots, n_{i}, \ldots\right\rangle & =\sqrt{n_{i}+1}\left|n_{1}, \ldots, n_{i}+1, \ldots\right\rangle . \tag{7}
\end{align*}
$$

e) Show that the states (5) build an orthonormal basis. Define the total number operator $\hat{n}=$

$$
\left|n_{1}, \ldots, n_{m}\right\rangle
$$

How many linearly independent states $|\Psi\rangle$ exist for a given particle number $N|\Psi\rangle=\hat{n}|\Psi\rangle$?

Learning objective

This problem reviews properties of fermionic creation and annihilation operators in a single-mode Fock space, whereas the last part generalizes this concept to many-particle systems.

Now we introduce fermionic operators, which fulfill the anti-commutation relation

$$
\begin{equation*}
\left\{a, a^{\dagger}\right\}=1 \tag{8}
\end{equation*}
$$

The occupation number operator is given by $\hat{n}=a^{\dagger} a$ with eigenstates $|n\rangle$ and eigenvalues n.
a) Using (8), show that $a|n\rangle$ and $a^{\dagger}|n\rangle$ are eigenstates of \hat{n}.
b) Prove the following relations:

$$
\begin{equation*}
a|n\rangle=\sqrt{n}|1-n\rangle \quad a^{\dagger}|n\rangle=\sqrt{1-n}|1-n\rangle . \tag{9}
\end{equation*}
$$

c) Show that there has to be a state $|G\rangle$ with $a|G\rangle=0$ and a state $|H\rangle$ with $a^{\dagger}|H\rangle=0$. Further show that these are the only states in the Hilbert space. Assume that n is an integer.
Hint: Use the fact that there are no states with negative norm.
d) Using the anti-commutation relations of operators in fermionic Fock space,

$$
\begin{equation*}
\left\{a_{i}, a_{j}^{\dagger}\right\}=\delta_{i j}, \quad\left\{a_{i}, a_{j}\right\}=0, \quad\left\{a_{i}^{\dagger}, a_{j}^{\dagger}\right\}=0 \tag{10}
\end{equation*}
$$

and the states

$$
\begin{equation*}
\left|n_{1}, \ldots, n_{i}, \ldots\right\rangle=\ldots\left(a_{i}^{\dagger}\right)^{n_{i}} \ldots\left(a_{1}^{\dagger}\right)^{n_{1}}|0\rangle, \tag{11}
\end{equation*}
$$

prove the following relations:

$$
\begin{align*}
a_{i}\left|n_{1}, \ldots, n_{i}, \ldots\right\rangle & =\delta_{n_{i}, 1}(-1)^{S_{i}}\left|n_{1}, \ldots, n_{i}-1, \ldots\right\rangle, \tag{12}\\
a_{i}^{\dagger}\left|n_{1}, \ldots, n_{i}, \ldots\right\rangle & =\delta_{n_{i}, 0}(-1)^{S_{i}}\left|n_{1}, \ldots, n_{i}+1, \ldots\right\rangle, \tag{13}
\end{align*}
$$

where $S_{i}=n_{\infty}+\cdots+n_{i+1}$
e) Show that the states (11) build an orthonormal basis. Define the total number operator $\hat{n}=$ $\sum \hat{n}_{i}=\sum a_{i}^{\dagger} a_{i}$. Now take a Hilbert-space of m-modes, i.e., the basis states of the Fock space are

$$
\left|n_{1}, \ldots, n_{m}\right\rangle .
$$

How many linearly independent states $|\Psi\rangle$ exist for a given particle number $N|\Psi\rangle=\hat{n}|\Psi\rangle$?

Problem 11.3: Expectation values of bosonic and fermionic operators

[Oral| 6 pt(s)]
ID: ex_expectation_values_fock_space: aqt2324

Learning objective

Here you will take the basis states of the bosonic and fermionic Fock space and practice the calculation of expectation values of many-particle systems.

In the following, we will work with the operators

$$
\begin{array}{ll}
A=c_{i}^{\dagger} c_{i} & B=c_{i}^{\dagger} c_{i} c_{j}^{\dagger} c_{j} \\
C=c_{i}^{\dagger} c_{j}^{\dagger} c_{j} c_{i} & D=c_{i}^{\dagger} c_{j}^{\dagger} c_{i} c_{j} .
\end{array}
$$

a) Show that these operators are self-adjoint. Consider the cases $c_{i}=b_{i}$ (bosons) and $c_{i}=a_{i} \quad 2^{\mathrm{pr(s)}}$ (fermions).
b) Calculate the expectation value of the operators A, B, C and D, taking the states (5), with $2^{p(s)}$ $c_{i}=b_{i}$, and (11), with $c_{i}=a_{i}$.
c) Finally, determine the matrix element

$$
\left\langle m_{1}, \ldots, m_{i}, \ldots\right| c_{i}^{\dagger} c_{j}+c_{j}^{\dagger} c_{i}\left|n_{1}, \ldots, n_{i}, \ldots\right\rangle,
$$

again both for the bosonic and fermionic Fock space and operator algebra.

