Problem 10.1: Particles in a Well

[Oral | 6 pt(s)]
ID: ex_in_distinguishabe_particles_in_1d_potential_well:aqt2324

Learning objective

In this exercise, we will exploit the symmetrization of the wave functions for determining the ground state and excited states of distinguishable and indistingishable particles in a 1D infinite potential well.

Consider a system of three non-interacting particles that are confined to move in a one-dimensional infinite potential well of length a such that $V(x)=0$ for $0<x<a$ and $V(x)=\infty$ for other values of x. Determine the energy and wave function of the ground state and the first and second excited states when the three particles are:
a) Spinless and distinguishable with masses $m_{1}<m_{2}<m_{3}$.
b) Identical bosons.
c) Identical spin $\frac{1}{2}$ particles.

Problem 10.2: Particles in a harmonic oscillator potential
[Written | 4 pt(s)]
ID: ex_2_particles_system_harmonic_oscillator: aqt2324

Learning objective

Similarly to the previous exercise, we will exploit the symmetrization of the wave functions for determining the ground state and excited states of a system made of two non-interacting identical particles under the influence of an external harmonic oscillator potential.

Consider a system of two non-interacting identical particles moving in a common external harmonic oscillator potential. Since the particles are non-interacting and identical, their Hamiltonian is given by $\hat{H}=\hat{H}_{1}+\hat{H}_{2}$, where \hat{H}_{1} and \hat{H}_{2} are the Hamiltonians of particles 1 and 2:

$$
\hat{H}_{j}=-\left(h^{2} / 2 m\right) d^{2} / d x_{j}^{2}+m \omega x_{j}^{2} / 2
$$

with $j=1,2$. The total energy of the system is $E_{n_{1} n_{2}}=\varepsilon_{n_{1}}+\varepsilon_{n_{2}}$, where $\varepsilon_{n_{j}}=\left(n_{j}+\frac{1}{2}\right) h \omega$.
a) We first consider two spin- 1 particles. The spin states corresponding to $S=2$ are given by

$$
\begin{gathered}
|2, \pm 2\rangle=|1,1 ; \pm 1, \pm 1\rangle, \quad|2, \pm 1\rangle=\frac{1}{\sqrt{2}}(|1,1 ; \pm 1,0\rangle+|1,1 ; 0, \pm 1\rangle) \\
|2,0\rangle=\frac{1}{\sqrt{6}}(|1,1 ; 1,-1\rangle+2|1,1 ; 0,0\rangle+|1,1 ;-1,1\rangle)
\end{gathered}
$$

those corresponding to $S=1$ by

$$
\begin{aligned}
|1, \pm 1\rangle & =\frac{1}{\sqrt{2}}(\pm|1,1 ; \pm 1,0\rangle \mp|1,1 ; 0, \pm 1\rangle) \\
|1,0\rangle & =\frac{1}{\sqrt{2}}(|1,1 ; 1,-1\rangle-|1,1 ;-1,1\rangle),
\end{aligned}
$$

and the one corresponding to $S=0$ by

$$
|0,0\rangle=\frac{1}{\sqrt{3}}(|1,1 ; 1,-1\rangle-|1,1 ; 0,0\rangle+|1,1 ;-1,1\rangle) .
$$

Determine the energy and the wave functions of the ground state and the first excited state for two spin 1 particles with no orbital angular momentum.
b) Calculate the same quantities for two spin $\frac{1}{2}$ particles. Remember in this case that the singlet $2^{\mathrm{p}(\mathrm{s})}$ (anti-symmetric) and triplet (symmetric) states are given by:

$$
\chi_{\text {triplet }}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right)=\left\{\begin{array}{l}
\left|\frac{1}{2} \frac{1}{2}\right\rangle_{1}\left|\frac{1}{2} \frac{1}{2}\right\rangle_{2}, \\
\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2} \frac{1}{2}\right\rangle_{1}\left|\frac{1}{2}-\frac{1}{2}\right\rangle_{2}+\left|\frac{1}{2}-\frac{1}{2}\right\rangle_{1}\left|\frac{1}{2} \frac{1}{2}\right\rangle_{2}\right), \\
\left|\frac{1}{2}-\frac{1}{2}\right\rangle_{1}\left|\frac{1}{2}-\frac{1}{2}\right\rangle_{2},
\end{array}\right.
$$

and:

$$
\chi_{\text {singlet }}\left(\boldsymbol{S}_{1}, \boldsymbol{S}_{2}\right)=\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2} \frac{1}{2}\right\rangle_{1}\left|\frac{1}{2}-\frac{1}{2}\right\rangle_{2}-\left|\frac{1}{2}-\frac{1}{2}\right\rangle_{1}\left|\frac{1}{2} \frac{1}{2}\right\rangle_{2}\right) .
$$

