Problem 15.1: Addition of angular momentum

Institute for Theoretical Physics III, University of Stuttgart

ID: ex_addition_angular_momentum_repetition:aqt2223

Prof. Dr. Hans-Peter Büchler

A hydrogen atom has an electron with spin S and S = 1/2 and orbital angular momentum L, as well as a nucleus with nuclear spin I and I = 1/2.

- a) Consider the system in its electronic ground state with orbital angular momentum l = 0 and principal quantum number n = 1. What is the ground state degeneracy? What values can the total angular momentum F = L + S + I assume?
- b) Now consider the system to be in a state with orbital angular momentum l = 1. What are the possible values for the total angular momentum and what are the corresponding degeneracies?

Problem 15.2: Time-dependent perturbation theory

ID: ex_time_dependent_perturbation_theory_repetition:aqt2223

We analyze a one-dimensional harmonic oscillator with mass m and frequency ω in a time-dependent electric field. The Hamiltonian has the form $H = H_0 + H'(t)$ with $H_0 = p^2/2m + m\omega^2 x^2/2$ and the perturbation H'(t) = xD(t). The time-dependence of the electric field has the form

$$D(t) = \frac{A}{\tau\sqrt{\pi}}e^{-(t/\tau)^2} \tag{1}$$

with the constants A > 0 and $\tau > 0$. Determine the transition probability $P_{0\to n}(\infty)$ from the ground state $|0\rangle$ to an exited state $|n\rangle$ in first order perturbation theory, i.e. the transition probability for large times $t \to \infty$. What happens for $\tau \to 0$?

Problem 15.3: Quantization of the radiation field [9 pt(s)]

ID: ex_quantization_radiation_field_repetition:aqt2223

- a) Write down the Hamiltonian of the quantized radiation field (photons). What is the Hilbert 1^{pt(s)} space called? Give a full basis of the Hilbert space.
- b) What is the field operator $\vec{B}(r, t)$ of the magnetic field? Explain the different terms.

Now we consider an atom with the ground state $|g\rangle$ and exited state $|e\rangle$ with energies E_g and E_e . We want to investigate the decay of the exited state due to interactions with the radiation field. The interactions of both states with the radiation field can be written as

$$H_{\rm int} = -\hat{\boldsymbol{\mu}} \cdot \hat{\boldsymbol{B}} = -(|g\rangle \langle e| + |e\rangle \langle g|) \boldsymbol{d} \cdot \hat{\boldsymbol{E}}$$
⁽²⁾

with the dipole moment $d = \langle q | \hat{d} | e \rangle = \langle e | \hat{d} | g \rangle$ between both states.

c) Write down Fermis golden rule. Initially the atom is in the exited state and the radiation field is 1^{pt(s)} in the vacuum state. What is the final state after the decay?

is

[2 pt(s)]

[4 pt(s)]

1^{pt(s)}

- d) Calculate the matrix element in Fermis golden rule and determine the rate of decay into a specific 2^{pt(s)} mode.
- e) Calculate the density of states for free photons.
- f) Now calculate the rate of decay of the exited state, where we are not interested in which mode ^{2^{pt(s)}} the photon is emitted. What role does the polarization play?

Problem 15.4: Second quantization

ID: ex_second_quantization_repetition:aqt2223

Let $\psi^{\dagger}(\boldsymbol{x})$ be a fermionic field operator. The field operator describes a spinless particle and only consists of one component. Furthermore we define an operator

$$B^{\dagger}(\boldsymbol{R}) = \frac{1}{2} \int d\boldsymbol{r} \, \phi(\boldsymbol{r}) \psi^{\dagger}(\boldsymbol{R} + \boldsymbol{r}/2) \psi^{\dagger}(\boldsymbol{R} - \boldsymbol{r}/2)$$
(3)

where the wave function $\phi(\mathbf{r})$ describes a bound state. Thus for $|\mathbf{r}| > a_0$ we can set the wave function $\phi(\mathbf{r}) = 0$, where the characteristic length a_0 describes the size of the bound state. Furthermore the wave function is normalized, i.e. $\int d\mathbf{r} |\phi(\mathbf{r})|^2 = 1$.

- a) What relations do the field operators $\psi^{\dagger}(\boldsymbol{x})$ and $\psi(\boldsymbol{y})$ fulfill? $2^{\text{pt(s)}}$
- b) Which of the following relations can be fulfilled by $\phi(\mathbf{r})$ (justify your answer)? $2^{\text{pt(s)}}$

$$\phi(\mathbf{r}) = \phi(-\mathbf{r}) \quad \phi(\mathbf{r}) = -\phi(-\mathbf{r}) \quad \phi(\mathbf{r}) = \phi(\mathbf{r})^*$$
(4)

- c) Calculate the commutator $[B(\mathbf{R}'), B^{\dagger}(\mathbf{R})]$. Explain, why for large distances $|\mathbf{R} \mathbf{R}'| \gg a_0$ the ^{2^{pt(s)}} operator $B^{\dagger}(\mathbf{R})$ describes the field operator of a bosonic particle.
- d) Give an example from nature where two fermions bind to form a bosonic particle.

Problem 15.5: Dirac equation

ID: ex_dirac_equation_repetition:aqt2223

- a) Write down the Dirac equation in its covariant form with help of the γ -matrices. How many $2^{pt(s)}$ γ -matrices are there? How many components does the Dirac-spinor ψ have?
- b) Under a Lorentz-transformation Λ a contravariant vector x^{μ} transforms as $x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu}$. How $\mathbf{1}^{\text{pt(s)}}$ does the differential operator of a contravariant vector $\partial/\partial x^{\mu}$ transform?
- c) The spinor ψ transforms via $\psi'(x') = S(\Lambda)\psi(x)$. What are the requirements that S and the γ -matrices need to fulfill, such that the Dirac equation is lorentz invariant (with derivation/justification)?

1^{pt(s)}

[4 pt(s)]

[7 pt(s)]