
FORT. VIELTEILCHENTHEORIE / ADV. QUANTUM THEORY Problem Set 10

Prof. Dr. Hans-Peter Büchler December 22nd, 2022

Institute for Theoretical Physics III, University of Stuttgart WS 2022/23

Problem 10.1: Squeezed States [Oral | 3 pt(s) ]

ID: ex_squeezed_states:aqt2223

Learning objective

In Problem Set 7, we have studied coherent states. The quantum state of the harmonic oscillator, that

minimizes the uncertainty relation with the uncertainty equally distributed between the non-commuting

observables Q and P , is such a coherent state. In this exercise, we study squeezed states, for which the

uncertainty of one of the observables is smaller than for the coherent state. To respect the uncertainty

principle, the uncertainty of the other observable must be larger than for the coherent state. Squeezed

states of light are an example of non-classical light.

For the harmonic oscillator with frequency ω, coherent states obey

〈∆Q2〉 =
h̄

2mω
and 〈∆P 2〉 =

h̄mω

2
(1)

and thus squeezed states fulfill

〈∆Q2〉 ≤ h̄

2mω
or 〈∆P 2〉 ≤ h̄mω

2
. (2)

We define the squeeze operator S(ε) as

S(ε) = exp

(
ε∗

2
a2 − ε

2

(
a†
)2)

. (3)

a) Write the operatorsQ and P in terms of the creation and annihilation operators of the harmonic 1pt(s)

oscillator and prove that coherent states satisfy equation (1).

b) Derive the following relations for S(ε) with ε = r exp (iφ), where r is an arbitrary radius and φ 1pt(s)

an arbitrary phase:

S†(ε) = S−1(ε) = S(−ε) , (4)

S†(ε) aS(ε) = a cosh(r)− a† eiφ sinh(r) , (5)

S†(ε) a† S(ε) = a† cosh(r)− a e−iφ sinh(r) . (6)

c) Verify that the states |α , ε〉 = D(α) S(ε) |0〉 are squeezed states. Here,D(α) = exp
(
αa† − α∗a

)
1pt(s)

is the displacement operator.
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Problem 10.2: Spontaneous decay of the Hydrogen Atom [Written | 3 pt(s) ]

ID: ex_spontaneous_decay_hydrogen_atom:aqt2223

Learning objective

In this exercise you will calculate which transitions in the Hydrogen atom can occur spontaneously.

Based on this you then will calculate the transition rates for electrons from the n = 2 manifold back to

the ground state.

Consider an excited Hydrogen atom in the state |n, l,m〉 inside the electromagnetic vacuum. We try

to find the possible transitions into a state |n′, l′,m′〉 by emitting a photon in the mode |nk,λ = 1〉.
Assuming the light-matter interaction is adiabatically turned on and offwe can calculate the transition

in first order perturbation theory as

〈n′, l′,m′;nk,λ = 1|Ψ(t)〉 = 1

ih̄
e−iEf (t−t0)

∫ t

t0

dt1 〈n′, l′,m′;nk,λ = 1|Hint(t1) |n, l,m;nk,λ = 0〉 . (7)

In the lecture It was shown that this results in the transition rate

Γ =
d

dt
| 〈n′, l′,m′;nk,λ = 1|Ψ(t)〉 |2 = 2αω

3

(h̄ω)2

mc2ER

|rab/aB|2,

where ER is the Rydberg energy, aB the Bohr radius and ω is the frequency resonant to the transition

En → En′ . Further, the dipole matrix element rab is given by

rab = 〈n′, l′,m′| r |n, l,m〉 . (8)

a) First rewrite r = (x, y, z)T = r(sin θ cosφ, sin θ sinφ, cos θ)T . Then express this vector in terms 1pt(s)

of the spherical harmonics Yl,m(θ, φ). Use this to find the transitions which are allowed in first

order.

b) Explicitly calculate the dipole matrix elements for the n = 2 → n = 1 transition. 1pt(s)

c) For an Hydrogen atom prepared in any of the n = 2 states, what are the average life times? 1pt(s)
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Problem 10.3: The Casimir Effect (Christmas Exercise)∗ [Written | 6 bonuspt(s) ]

ID: ex_the_casimir_effect:aqt2223

Learning objective

In this problem, you study the Casimir effect which is a quantum effect that, owing to quantum fluctuations

of the electromagnetic field, leads to an attractive force between two parallel conducting plates in vacuum.

This effect was predicted by H. Casimir in 1948a and experimentally confirmed by Sparnaay in 1958b.

aHendrik Casimir, On the attraction between two perfectly conducting plates. Proc. Kon. Nederland. Akad.

Wetensch. B51, 793 (1948)
bM.J. Sparnaay, Measurements of attractive forces between flat plates, Physica 24, 751-764 (1958)

a) Let us consider an electromagnetic field confined in a rectangular cavity (of dimensions L1 × 1pt(s)

L2 × L3) with conducting walls. Since the transverse component of the electric field vanishes at

the surface of a perfect conductor, E has to be perpendicular and B parallel to the walls at the

boundaries. Show that these boundary conditions are satisfied by plane waves (∼ e−iωt) if the

components of the electric field have the following form

E1 = E0
1 cos (k1x1) sin (k2x2) sin (k3x3) e

−iωt , (9)

E2 = E0
2 sin (k1x1) cos (k2x2) sin (k3x3) e

−iωt , (10)

E3 = E0
3 sin (k1x1) sin (k2x2) cos (k3x3) e

−iωt , (11)

where ki = niπ/Li and ni ∈ Z and that the possible frequencies ω are restricted by the dispersion

relation of light

1

c2
ω2(n1, n2, n3) = k2 = π2

∑
i

(n2
i /L

2
i ). (12)

b) Show that the corresponding boundary conditions for the magnetic field B are fulfilled automa- 1pt(s)

tically. Recall that the magnetic field B is related to the electric field by the Maxwell-Faraday

equation ∇× E = i (ω/c)B.

c) The amplitudes E0
i are fixed by the condition ∇ · E = 0 and thus satisfy 1pt(s)∑

i

E0
i ki = 0. (13)

Show that in general equation (13) has two linearly independent solutions, corresponding to the

two polarizations of the electromagnetic field. Show that if one of the ni vanishes, there is only

one solution while there is no solution if two or more vanish.

d) Consider now two conducting and non-charged, conducting plates of dimensions L× L placed 1pt(s)

parallel to each other as shown in Figure (1). One conducting plate is fixed at the beginning of

the box, while the second plate is chosen to be at a distance d from the former. This second plate

will be moved to a distance R/η (with arbitrary η > 0) in a forthcoming step.

Problem Set Version: 1.0 | aqt2223
Page 3 of 5



FORT. VIELTEILCHENTHEORIE / ADV. QUANTUM THEORY Problem Set 10

EI EII
Plate 1

Plate 2

L

L

d
R

Figure 1: Setup of the two plates used to measure the Casimir effect.

We can define

U(d, L,R) := EI(d) + EII(R− d)− [EIII(R/η) + EIV (R−R/η)] , (14)

as the energy difference between the zero point energies of the initial and final configurations,

where EI , EII , EIII , EIV refer to the zero-point energy of each section, respectively. Show that

each of the energies is divergent.

Defining these sections is indeed a tool to avoid divergences, as we are actually interested in taking

the limit

U(d, L) = lim
R→∞

U(d, L,R) . (15)

Therefore, we first regularize the sums of the zero-point energy before calculating Eq. (15). In the

end, we undo the regularization in order to arrive at the final result.

As the divergence comes from contributions from high-frequencies, a convenient regularization

method is to introduce some high-frequency cut-off

EI,II → Ereg
I,II =

∑
ω

1

2
h̄ω exp[−αω/πc] , (16)

where the limit α → 0 corresponds to the case we are interested in. Taking into account the

dispersion relation (12), we have

Ereg
I = h̄c

∑
l,m,n

kl,m,n exp[− (α/π) kl,m,n)] , (17)

where

kl,m,n =

√(
lπ

d

)2

+
(mπ

L

)2

+
(nπ
L

)2

. (18)

The regularized energy difference is then defined as

U reg (d, L,R, α) = Ereg
I (d) + Ereg

II (R− d)− [Ereg
III (R/η) + Ereg

IV (R−R/η)] . (19)

Consider now the sum in equation (17). For large L, one can replace the sums over m and n by

integrals (a more precise way would be to study U reg(d,R, L2, α)/L2 when L goes to infinity)
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obtaining

Ereg
I (d, L, α) = L2h̄cπ

∞∑
l=0

∫ ∞

0

dx

∫ ∞

0

dy

√(
l

d

)2

+ x2 + y2 ×

exp

−α

√(
l

d

)2

+ x2 + y2

 . (20)

As the term with l = 0 in (20) only depends on α, it does not contribute to the energy difference (19)
and can simply be neglected in the following.

e) Show that equation (20) can be written as 1pt(s)

Ereg
I = −π2

4
h̄c L2 d3

dα3

∞∑
l=1

∫ ∞

0

dz

1 + z
exp

[
− l

d
α
√
1 + z

]
. (21)

Perform the summation over l and then take the derivative with respect to α, arriving to

Ereg
I =

π2h̄cL2

2d

d2

dα2

d/α

exp[α/d]− 1
. (22)

f) Calculate U reg by taking the limits 1pt(s)

lim
R→∞

lim
α→0

U reg(d, L,R, α) (23)

and show that the energy shift due to the vacuum fluctuations is given by

U(d,A) = − π2

720

h̄cA

d3
, (24)

where A = L2 is the surface of one plate. Due to this energy shift, there is a non-zero, attractive

force between the two plates

F = −∂U(d,A)

∂d
= − π2

240

h̄cA

d4
. (25)

.

Hint: y
ey−1 =

∑∞
n=0

Bn
n! y

n where the Bn are the Bernoulli numbers.
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